Answer:
Step-by-step explanation:
roots are (2+3i) and (2-3i)
reqd. eq. is (x-2-3i)(x-2+3i)=0
or (x-2)²-(3i)²=0
or x²-4x+9-9i²=0
or x²-4x+9+9=0
or x²-4x+18=0
Answer:
10
Step-by-step explanation:
10-10=0
![\frac{3}{9}](https://tex.z-dn.net/?f=%20%5Cfrac%7B3%7D%7B9%7D%20)
+
![\frac{3}{27}](https://tex.z-dn.net/?f=%20%5Cfrac%7B3%7D%7B27%7D%20)
equals
![\frac{4}{9}](https://tex.z-dn.net/?f=%20%5Cfrac%7B4%7D%7B9%7D%20)
.
First, simplify
![\frac{3}{9}](https://tex.z-dn.net/?f=%20%5Cfrac%7B3%7D%7B9%7D%20)
to
![\frac{1}{3}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B3%7D%20)
and also
![\frac{3}{27}](https://tex.z-dn.net/?f=%20%5Cfrac%7B3%7D%7B27%7D%20)
to
![\frac{1}{9}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B9%7D%20)
. Your problem should look like:
![\frac{1}{3}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B3%7D%20)
+
![\frac{1}{9}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B9%7D%20)
.
Second, find the least common denominator of
![\frac{1}{3}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B3%7D%20)
and
![\frac{1}{9}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B9%7D%20)
to get 9.
Third, make the denominators the same as the least common denominator (LCD). Your problem should look like:
![\frac{1x3}{3x3}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1x3%7D%7B3x3%7D%20)
+
![\frac{1}{9}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B9%7D%20)
.
Fourth, simplify to get the denominators the same. Your problem should look like:
![\frac{3}{9}](https://tex.z-dn.net/?f=%20%5Cfrac%7B3%7D%7B9%7D%20)
+
![\frac{1}{9}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B9%7D%20)
.
Fifth, join the denominators. Your problem should look like:
![\frac{3+1}{9}](https://tex.z-dn.net/?f=%20%5Cfrac%7B3%2B1%7D%7B9%7D%20)
.
Sixth, simplify. Your problem should look like:
![\frac{4}{9}](https://tex.z-dn.net/?f=%20%5Cfrac%7B4%7D%7B9%7D%20)
, which is the answer.
Mark me brainliest plsssssss