We have that
an=<span>10 * 5n---------------> an=50*n
then
for n=1
a1=50*1=50
</span>for n=2
a2=50*2=100
for n=3
a3=50*3=150
for n=4
a4=50*4=200<span>
the answer is
</span><span>the first four terms are [50,100,150,200]</span><span>
</span>
Looking at this problem in terms of geometry makes it easier than trying to think of it algebraically.
If you want the largest possible x+y, it's equivalent to finding a rectangle with width x and length y that has the largest perimeter.
If you want the smallest possible x+y, it's equivalent to finding the rectangle with the smallest perimeter.
However, the area x*y must be constant and = 100.
We know that a square has the smallest perimeter to area ratio. This means that the smallest perimeter rectangle with area 100 is a square with side length 10. For this square, x+y = 20.
We also know that the further the rectangle stretches, the larger its perimeter to area ratio becomes. This means that a rectangle with side lengths 100 and 1 with an area of 100 has the largest perimeter. For this rectangle, x+y = 101.
So, the difference between the max and min values of x+y = 101 - 20 = 81.
The Government Charges A High Tax On Cigarettes And Gasoline Because These Are Things They Know People Will Want To Buy. Gas Is Something Most People Need As An Everyday Essential No Matter How High They Make The Tax Someone Will Pay For It Because Its Something They Need.
Hello,
A: roots: -1,-3
a point (-2,1)
Vertex=((-2,1)
y=k*(x+1)(x+3) using roots
but k*(-2+1)(-2+3)=1==>k*(-1)*1=1==>k=-1
eq: y=-(x+1)(x+3)
==>y=-(x²+3x+x+3)
==>y=-x²-4x-3
y=k(x+2)²+1 if x=-1,y=0 ==>k*1+1=0==>k=-1
==>y=-(x+2)²+1
Answer :A--> R,K
B)
y=k(x+4)²-2 and k=-1/2
y=-1/2(x+4)²-2
y=-1/2x²-4x-10
answer B--> I,≈W if it is written -1/2*x² (square has been forgotten)
C:
y=2x²-16x+30
y=2(x-4)²-2
answer : C-->S,J
D:
y=-(x+3)(x+1)
y=-x²-4x-3
=-(x+2)²+1
answer D--> V,L
E:
Here there is a problem: or the graph is wrong, or 2 equations are missing!
y=1(x+1)(x-3) using roots
y=x²-2x-3 ≈ T si it were -2x and not +2x.
y=(x-1)²-4 ≈H is it were -1 in place of +1 [H:y=(x+1)²-4]
2x^3 + 9x - 8 - (4x^2 - 15x + 7)....distribute thru the parenthesis
2x^3 + 9x - 8 - 4x^2 + 15x - 7....combine like terms
2x^3 - 4x^2 + 24x - 15 <==