1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ale4655 [162]
4 years ago
13

Find the variable x.

Mathematics
1 answer:
grandymaker [24]4 years ago
5 0

Answer:

x = 7

Step-by-step explanation:

The inscribed angle (5x - 3) is equal to half the measure of the intercepted arc

5x - 3 = 0.5(9x + 1) ← multiply both sides by 2

10x - 6 = 9x + 1 ( subtract 9x from both sides )

x - 6 = 1 ( add 6 to both sides )

x = 7

You might be interested in
The ratio of the number of cakes to the number of muffins in different gift boxes is 5:4. Which table best shows the number of c
Maru [420]
I’m pretty sure it would be a, because the first set is going up by five and the second is going up by four.
3 0
4 years ago
Find the area of the regular polygon. Give the answer to the nearest tenth.
Molodets [167]
A regular dodecagon is a polygon with 12 equal sides.
Length of each side = 108/12 = 9 cm.

Length of the apothem = (9/2)/tan 15 = 9/2tan 15 = 16.79 cm

Area of each triangle = 9/2(16.79) = 75.57 cm^2

Therefore, area of the dodecagon = 12(75.57) = 906.9 cm^2
8 0
3 years ago
Read 2 more answers
PLEASE PLEASE PLEASE HELP!!!!!!!
iren [92.7K]

Answer:

x = 5, y = 6

Step-by-step explanation:

When you put these values in for x and y, the corresponding sides are congruent, also making the triangles congruent by the Hypotenuse-Leg Theorem.

I hope this helps! ☺

6 0
3 years ago
What is the solution of the matrix equation?
Alenkasestr [34]

Answer:

<h3>(-12, 2)</h3>

Step-by-step explanation:

\left[\begin{array}{ccc}1&1\\2&3\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] =\left[\begin{array}{ccc}8\\36\end{array}\right] \\\\\left[\begin{array}{ccc}x+y\\2x+3y\end{array}\right] =\left[\begin{array}{ccc}8\\36\end{array}\right]\\.\qquad\qquad\Downarrow\\\left\{\begin{array}{ccc}x+y=8&|\text{multiply both sides by (-2)}\\2x+3y=36\end{array}\right

\underline{+\left\{\begin{array}{ccc}-2x-2y=-16\\2x+3y=36\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad\qquad y=20\\\\\text{Put the value of y to the firast equation:}\\\\x+20=8\qquad\text{subtract 20 from both sides}\\x=-12\\\\\boxed{(-12,\ 20)}

8 0
3 years ago
Please help! Related to limits! 100 points!
creativ13 [48]

Answer:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

General Formulas and Concepts:
<u>Pre-Calculus</u>

2x2 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b \\ c & d \end{array} \right| = ad - bc

3x3 Matrix Determinant:
\displaystyle \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = a \left| \begin{array}{ccc} e & f \\ h & i \end{array} \right| - b \left| \begin{array}{ccc} d & f \\ g & i \end{array} \right| + c \left| \begin{array}{ccc} d & e \\ g & h \end{array} \right|

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_{x \to c} x = c

Limit Property [Multiplied Constant]:
\displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)

Special Limit Rule [L’Hopital’s Rule]:
\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}

Derivatives

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

I will not be able to fit in all the derivative work and will assume you can take derivatives with ease.

<u />

<u>Step 1: Define</u>

<em>Identify given.</em>

<em />\displaystyle \Delta (x) = \left| \begin{array}{ccc} \tan x & \tan (x + h) & \tan (x + 2h) \\ \tan (x + 2h) & \tan x & \tan (x + h) \\ \tan (x + h) & \tan (x + 2h) & \tan x \end{array} \right|

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2}

<u>Step 2: Find Limit Pt. 1</u>

  1. [Function] Simplify [3x3 and 2x2 Matrix Determinant]:
    \displaystyle \Delta (x) = \tan^3 (2h + x) + \tan^3 (h + x) + \tan^3 x - 3 \tan x \tan (h + x) \tan (2h + x)
  2. [Function] Substitute in <em>x</em>:
    \displaystyle \Delta \bigg( \frac{\pi}{3} \bigg) = \tan^3 \bigg( 2h+  \frac{\pi}{3} \bigg) + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) + 3\sqrt{3} - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h+  \frac{\pi}{3} \bigg)

<u>Step 3: Find Limit Pt. 2</u>

  1. [Limit] Rewrite [Limit Property - Multiplied Constant]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \lim_{h \to 0} \frac{\Delta (\frac{\pi}{3})}{h^2}
  2. [Limit] Apply Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \sqrt{3} \bigg( \frac{0}{0} \bigg)

Since we have an indeterminant form, we will have to use L'Hopital's Rule. We can <em>differentiate</em> using basic differentiation techniques listed above under "<u>Calculus</u>":

\displaystyle \frac{d \Delta (\frac{\pi}{3})}{dh} = -3\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \tan \bigg( 2h + \frac{\pi}{3} \bigg) + tan^2 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 3 \tan^2 \bigg( h + \frac{\pi}{3} + 3 \bigg] - 3\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 6 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 6 \bigg]

\displaystyle \frac{d}{dh} h^2 = 2h

Using L'Hopital's Rule, we can <em>substitute</em> the derivatives and evaluate again. When we do so, we should get <em>another</em> indeterminant form. We will need to use L'Hopital's Rule <em>again</em>:

\displaystyle \frac{d^2 \Delta (\frac{\pi}{3})}{dh^2} = \tan \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] - 2\sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 1 \bigg] - \sqrt{3} \bigg[ \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 1 \bigg] \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg]

\displaystyle + \tan^3 \bigg( h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] - \sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( h + \frac{\pi}{3} \bigg) + 2 \bigg] + \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 2 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 2 \bigg] \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle - 2\sqrt{3} \tan \bigg( h + \frac{\pi}{3} \bigg) \tan \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg] + 2 \tan^3 \bigg( 2h + \frac{\pi}{3} \bigg) \bigg[ 4 \tan^2 \bigg( 2h + \frac{\pi}{3} \bigg) + 4 \bigg]

\displaystyle \frac{d^2}{dh^2} h^2 = 2

<em>Substituting in </em>the 2nd derivative found via L'Hopital's Rule should now give us a numerical value when evaluating the limit using limit rules and the unit circle:

\displaystyle \lim_{h \to 0} \frac{\sqrt{3} \Delta (\frac{\pi}{3})}{h^2} = \boxed{ 144 \sqrt{3} }

∴ we have <em>evaluated</em> the given limit.

---

Learn more about limits: brainly.com/question/27438198

---

3 0
2 years ago
Other questions:
  • Select the outlier in the data set.
    11·1 answer
  • How to order fractions
    11·1 answer
  • What is the measure of the angle to the nearest degree? Enter the answer in the box.<br> degrees
    10·1 answer
  • Write the following quadratic in standard form. Then identify a, b, and c.<br> y² - 7y + 6 = -6
    13·1 answer
  • Combine the like terms to create an equivalent expression: -n+(-3)+3n+5
    6·1 answer
  • In order to purchase fencing to go around a rectangular​ yard, would you need to use perimeter or area to decide how much to​ bu
    5·1 answer
  • PLEASE HELP! I don’t understand
    5·2 answers
  • HELP ME ASAP ILL GIVE YOU BRAINLIEST!
    6·1 answer
  • Draw the reflection of the quadrilateral across the x-axis.
    7·2 answers
  • Which inequality has a solid boundary line when graphed?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!