Hi there!

To find the indefinite integral, we must integrate by parts.
Let "u" be the expression most easily differentiated, and "dv" the remaining expression. Take the derivative of "u" and the integral of "dv":
u = 4x
du = 4
dv = cos(2 - 3x)
v = 1/3sin(2 - 3x)
Write into the format:
∫udv = uv - ∫vdu
Thus, utilize the solved for expressions above:
4x · (-1/3sin(2 - 3x)) -∫ 4(1/3sin(2 - 3x))dx
Simplify:
-4x/3 sin(2 - 3x) - ∫ 4/3sin(2 - 3x)dx
Integrate the integral:
∫4/3(sin(2 - 3x)dx
u = 2 - 3x
du = -3dx ⇒ -1/3du = dx
-1/3∫ 4/3(sin(2 - 3x)dx ⇒ -4/9cos(2 - 3x) + C
Combine:

Answer:
the answer is B
Step-by-step explanation:
just did the test
Answer:
Step-by-step explanation:
6⁻︎¹(4⁻︎²)
1/6x1/4 2
1/6 x 1/16
1/96
I think that the answer would be 6+-8 because it equals -2 and 6-(-8)= -2
Answer:
compute its exterior angle as 360/18, which is 20 degrees
Step-by-step explanation: