1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
In-s [12.5K]
4 years ago
15

Solve using the substitution method.​

Mathematics
1 answer:
maxonik [38]4 years ago
8 0

Answer:

The solution is d = 3 and e = -1

Step-by-step explanation:

To solve using the substitution method, we need to first solve the second equation for d.

d - e = 4

d = e + 4

Now that we have the value of d, we can put it in for d in the first equation and solve for e.

d + e = 2

(e + 4) + e = 2

2e + 4 = 2

2e = -2

e = -1

Now that we have this value, we can plug it into the original equation and find d.

d + e = 2

d + -1 = 2

d = 3

You might be interested in
Write an expression for the difference of p and 4
const2013 [10]

Answer:

p - 4

Step-by-step explanation:

It is like saying 7 - 4, but with a variable.

3 0
3 years ago
Read 2 more answers
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
PLZZZ HELP!!!!!
katen-ka-za [31]
I want to say it's A? Write a direct variation equation to represent the cost?...

[EDIT]: I am sorry, I thought those were answer choices! Apologies! :)

3 0
3 years ago
Read 2 more answers
Bonita deposited $1300 into a bank account that earned 5.75% simple interest each year. She earned $299 in interest before closi
Stolb23 [73]

Answer: 299*100= 29,900

29,900/5.75= 5,200

answer is 5,200

Step-by-step explanation:

8 0
3 years ago
Write an equation of the line that passes through the pair of points.<br> (-4. - 2). (4.0)
snow_tiger [21]

First find the slope between the 2 points

0--2/4--4

=2/8

=1/4

Then y=1/4 x+b

Now substitute one pair of x and y into the equation

0=1/4*4+b

b=-1

So y=1/4x-1

Done!

8 0
3 years ago
Other questions:
  • Tanya tiene un jardin con un foso alrededor. El jaidim el un rectangulo de 2 1/2m de largo y 2m de ancho. El jardin y el foso ju
    15·1 answer
  • Please choose any two and help me answer i will be very grateful and will mark you brainliest
    11·2 answers
  • In the figure above, ABC and XYZ are similar figures. If the length of side AC is 5 units, the length of side BC is 8 units, and
    5·1 answer
  • A certain television is advertised as a 34-inch TV (the diagonal length). If the width of the TV is 30 inches, how many inches t
    10·2 answers
  • On a coordinate plane titled Area of Maya's Poster, a curved line with a minimum value of (1, negative 1) crosses the x-axis at
    5·1 answer
  • Solve -(x-2)(x-7) using the FOIL Method. Include steps
    10·1 answer
  • Need help ASAP .....................................
    12·1 answer
  • Finley makes 11 batch of her favorite shade of orange paint by mixing 55 liters of yellow paint with 33 liters of red paint. How
    14·1 answer
  • What is the mode of 6.0, 6.5,6.2,5.5,6.8,6.3,6.4,6.7,6.5,6.2​
    11·2 answers
  • Find the value of m.<br> 28<br> 3<br> 35°<br> | | (1 d.p.)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!