Answer:
A line a and line b
Step-by-step explanation:
Lines b and c are parallel (no intersection points), so the system will have no solutions.
Lines b and d are parallel (no intersection points), so the system will have no solutions.
Lines c and d coincide (infinitely many intersection points), so the system will have infinitely many solutions.
Lines a and b will intersect after extension, so the system of these two equations will have only one solution.
Given that normally distributed data set has a mean of 55 and 99.7% of data fall between 47.5 and 62.5.
Let s be the standard deviation of data set.
Since 99.7% data fall within 3 standard deviations of mean, z-value for 47.5 and 62.5 has an absolute value of 3.
That is |z|=3
But z= 
Let us plugin x=47.5 and mean =55 and equate it to 3.
That is 

Since x is always positive ( being standard deviation), 
Hence 

We will get same value with 62.5 as well.
Hence standard deviation of data set is 2.5.
Decide whether the statement is true or false. If false, provide a counterexample.
1. The equation 2x - 7 = 5 + x has exactly one solution TRUE
2. If x^2 = 16, then x must equal 8 or -8 TRUE
3. February 14 is Valentine's Day TRUE
4. If you visisted the Statue of Liberty, then you've been to New York TRUE
5. A point may lie on at most two lines FALSE A point may lie on more than zero to an infinite number of lines.
Write the converse and contropositive of each statement.
6. If you like tennis, then you play on the tennis team FALSE You don't have to. Haha.
7. If x is odd, then 2x is even TRUE
8. If m
Rearrange 2x+y=17 to slope intercept form: y=-2x+17
slope of that equation is -2 and perpendicular slope is 1/2
use point slope form and put the point(2,10) and slope in there to get y-10= 1/2(x-2)
rearrange to get y=1/5x+9.6
This should be correct
1/2 cup of sugar since flour is 4x the amount