Answer:
Our equation for the height is:
y(t) = 275 - 16*t^2.
a) To find the average velocity between two times, t1 and t2, (where t2 > t1) the equation is:
Then:
i) t1 = 4s, t2 = 4s + 0.1s = 4.1s
The average velocity is:
And the units will be ft/s, so the average speed is:
-129.6 ft/s
The minus sign is because te pebble is falling down.
ii) t1 = 4s, t2 = 4s + 0.05s = 4.05s
The average velocity is:
So the average speed is -128.9 ft/s
iii) t1 = 4s, t2 = 4s + 0.01s = 4.01s
The average speed is:
The average speed is -128.16 ft/s.
b) The instantaneous velocity of the pebble after 4 seconds can be obtained by looking at the velocity equation, that is the derivative of the height equation.
v(t) = dy(t)/dt.
v(t) = -2*16*t + 0
Then the velocity at t = 4s is:
v(4s) = -32*4 = -128
The instantaneous velocity at t = 4s is -128 ft/s.