1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena55 [62]
3 years ago
9

How many liters are in a gallon of water?

Mathematics
2 answers:
Afina-wow [57]3 years ago
6 0
You need to use a conversion table:

1 gallon of water is equal to 3.785 liters.
Alenkasestr [34]3 years ago
3 0
In 1 gallon there are 3.8 liters 
You might be interested in
The use of mathematical methods to study the spread of contagious diseases goes back at least to some work by Daniel Bernoulli i
harina [27]

Answer:

a

   y(t) = y_o e^{\beta t}

b

      x(t) =  x_o e^{\frac{-\alpha y_o }{\beta }[e^{-\beta t} - 1] }

c

      \lim_{t \to \infty} x(t) = x_oe^{\frac{-\alpha y_o}{\beta } }

Step-by-step explanation:

From the question we are told that

    \frac{dy}{y} =  -\beta dt

Now integrating both sides

     ln y  =  \beta t + c

Now taking the exponent of both sides

       y(t) =  e^{\beta t + c}

=>     y(t) =  e^{\beta t} e^c

Let  e^c =  C

So

      y(t) = C e^{\beta t}

Now  from the question we are told that

      y(0) =  y_o

Hence

        y(0) = y_o  = Ce^{\beta * 0}

=>     y_o = C

So

        y(t) = y_o e^{\beta t}

From the question we are told that

      \frac{dx}{dt}  = -\alpha xy

substituting for y

      \frac{dx}{dt}  = - \alpha x(y_o e^{-\beta t })

=>   \frac{dx}{x}  = -\alpha y_oe^{-\beta t} dt

Now integrating both sides

         lnx = \alpha \frac{y_o}{\beta } e^{-\beta t} + c

Now taking the exponent of both sides

        x(t) = e^{\alpha \frac{y_o}{\beta } e^{-\beta t} + c}

=>     x(t) = e^{\alpha \frac{y_o}{\beta } e^{-\beta t} } e^c

Let  e^c  =  A

=>  x(t) =K e^{\alpha \frac{y_o}{\beta } e^{-\beta t} }

Now  from the question we are told that

      x(0) =  x_o

So  

      x(0)=x_o =K e^{\alpha \frac{y_o}{\beta } e^{-\beta * 0} }

=>    x_o = K e^{\frac {\alpha y_o  }{\beta } }

divide both side  by    (K * x_o)

=>    K = x_o e^{\frac {\alpha y_o  }{\beta } }

So

    x(t) =x_o e^{\frac {-\alpha y_o  }{\beta } } *  e^{\alpha \frac{y_o}{\beta } e^{-\beta t} }

=>   x(t)= x_o e^{\frac{-\alpha * y_o }{\beta} + \frac{\alpha y_o}{\beta } e^{-\beta t} }

=>    x(t) =  x_o e^{\frac{\alpha y_o }{\beta }[e^{-\beta t} - 1] }

Generally as  t tends to infinity ,  e^{- \beta t} tends to zero  

so

    \lim_{t \to \infty} x(t) = x_oe^{\frac{-\alpha y_o}{\beta } }

5 0
3 years ago
Which expression is equivalent to (2x + 3)2 – 5?
ddd [48]
4x+6-5
turns into 4x+1
5 0
2 years ago
Two-fifths of the senior class earned a grade of B+ or higher on an advanced mathematics exam.
matrenka [14]
2/5 = 42
1/5 = 21
5/5 = 105

105 students in the class
5 0
3 years ago
Read 2 more answers
I need help with #11
Troyanec [42]
\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\\\

\begin{array}{rllll} 
% left side templates
f(x)=&{{  A}}({{  B}}x+{{  C}})+{{  D}}
\\ \quad \\
y=&{{  A}}({{  B}}x+{{  C}})+{{  D}}
\\ \quad \\
f(x)=&{{  A}}\sqrt{{{  B}}x+{{  C}}}+{{  D}}
\\ \quad \\
f(x)=&{{  A}}(\mathbb{R})^{{{  B}}x+{{  C}}}+{{  D}}
\\ \quad \\
f(x)=&{{  A}} sin\left({{ B }}x+{{  C}}  \right)+{{  D}}
\end{array}

\bf \begin{array}{llll}
% right side info
\bullet \textit{ stretches or shrinks horizontally by  } {{  A}}\cdot {{  B}}\\\\
\bullet \textit{ flips it upside-down if }{{  A}}\textit{ is negative}
\\\\
\bullet \textit{ horizontal shift by }\frac{{{  C}}}{{{  B}}}\\
\qquad  if\ \frac{{{  C}}}{{{  B}}}\textit{ is negative, to the right}\\\\
\qquad  if\ \frac{{{  C}}}{{{  B}}}\textit{ is positive, to the left}\\\\
\end{array}

\bf \begin{array}{llll}


\bullet \textit{ vertical shift by }{{  D}}\\
\qquad if\ {{  D}}\textit{ is negative, downwards}\\\\
\qquad if\ {{  D}}\textit{ is positive, upwards}\\\\
\bullet \textit{ period of }\frac{2\pi }{{{  B}}}
\end{array}

now, with that template in mind, let's take a peek at this function

\bf \begin{array}{lllcclll}
y=&2(&1x&-2)^2&-4\\
&\uparrow &\uparrow &\uparrow &\uparrow \\
&A&B&C&D
\end{array}\\\\
-----------------------------\\\\
A\cdot B=2\impliedby \textit{shrunk by a factor of 2, of half-size}\\\\
\cfrac{C}{B}= \cfrac{-2}{1}\implies -2\impliedby \textit{horizontal right shift of 2 units}\\\\
D=-4\impliedby \textit{vertical down shift of 4 units}

so, the graph of y=2(x-2)²-4, is really the same graph of y=x², BUT, narrower, and moved about horizontally and vertically
8 0
3 years ago
Read 2 more answers
Pls help me
gizmo_the_mogwai [7]

Answer:

no

no

no

yes yes

Step-by-step explanation:

not 100% but it should be right

3 0
2 years ago
Other questions:
  • Showing statements are true of the graph of the function F(x)= (x+5) (x-3)
    11·1 answer
  • (10 - 6i)/(2 + 8i) =?
    12·1 answer
  • PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!
    8·2 answers
  • Write a formula that will help Jenny determine how much she will earn in one week
    12·1 answer
  • What is the distance between a line that has endpoints at (1,5) and (1,-5)?
    12·1 answer
  • I giveeee brainlilster
    15·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Cfrac%7B8%7D%7B3-4x%7D%20%3D%20%5Cfrac%7B5%7D%7B2x%2B.25%7D" id="TexFormula1" title="\frac{8
    7·1 answer
  • BRAINLIEST!!! he dot plot shows predictions for the winning time in the​ 200-meter sprint. The winner finished the race in 22.2
    8·1 answer
  • Question Multiple Choice Worth 1 points)
    7·1 answer
  • Which matrix equation represents the system of equations
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!