Answer:
1. Consistent equations
x + y = 3
x + 2·y = 5
2. Dependent equations
3·x + 2·y = 6
6·x + 4·y = 12
3. Equivalent equations
9·x - 12·y = 6
3·x - 4·y = 2
4. Inconsistent equations
x + 2 = 4 and x + 2 = 6
5. Independent equations
y = -8·x + 4
8·x + 4·y = 0
6. No solution
4 = 2
7. One solution
3·x + 5 = 11
x = 2
Step-by-step explanation:
1. Consistent equations
A consistent equation is one that has a solution, that is there exist a complete set of solution of the unknown values that resolves all the equations in the system.
x + y = 3
x + 2·y = 5
2. Dependent equations
A dependent system of equations consist of the equation of a line presented in two alternate forms, leading to the existence of an infinite number of solutions.
3·x + 2·y = 6
6·x + 4·y = 12
3. Equivalent equations
These are equations with the same roots or solution
e.g. 9·x - 12·y = 6
3·x - 4·y = 2
4. Inconsistent equations
Inconsistent equations are equations that are not solvable based on the provided set of values in the equations
e.g. x + 2 = 4 and x + 2 = 6
5. Independent equations
An independent equation is an equation within a system of equation, that is not derivable based on the other equations
y = -8·x + 4
8·x + 4·y = 0
6. No solution
No solution indicates that the solution is not in existence
Example, 4 = 2
7. One solution
This is an equation that has exactly one solution
Example 3·x + 5 = 11
x = 2
Answer:
d. 1 grid equals 1 hour
Step-by-step explanation:
When plotting research data, X-axis(or horizontal axis) usually used for independent variable and Y-axis is used for the dependent variable. In this case, Heather wants to know how much earning on different numbers of hours. The dependent variable is the earning and the independent variable is the hours, so you put hours on the horizontal axis.
You want to make a 10x10 grid of data and the hours ranged between 1-10. If you plot them equally, approximate scale will be: (10h-1h)/(10)= 0.9h/grid
The closest option is 1 hour per grid. It will provide the best visualization since it won't stretch or minimize the data too much.
Subtract 7 both sides
Subtract 9x both side
They cancel out
At the end you divide it
I don’t have access to paper right now sorry
b must be equal to -6 for infinitely many solutions for system of equations
and 
<u>Solution:
</u>
Need to calculate value of b so that given system of equations have an infinite number of solutions

Let us bring the equations in same form for sake of simplicity in comparison

Now we have two equations

Let us first see what is requirement for system of equations have an infinite number of solutions
If
and
are two equation
then the given system of equation has no infinitely many solutions.
In our case,

As for infinitely many solutions 

Hence b must be equal to -6 for infinitely many solutions for system of equations
and