The recursive formula of the geometric sequence is given by option D; an = (1) × (5)^(n - 1) for n ≥ 1
<h3>How to determine recursive formula of a geometric sequence?</h3>
Given: 1, 5, 25, 125, 625, ...
= 5
an = a × r^(n - 1)
= 1 × 5^(n - 1)
an = (1) × (5)^(n - 1) for n ≥ 1
Learn more about recursive formula of geometric sequence:
brainly.com/question/10802330
#SPJ1
Answer:g(x)=-4^2+4x-5
Step-by-step explanation:
Answer:
X= -1
Y= 2
Step-by-step explanation:
-1 + 3(2) = 5
-1 - 2 = -3
Answer:
the answer is $39.00
Step-by-step explanation:
X^2-2x -3 =0
a =1 b =-2 and c = -3
x = - (-2) +/- sqrt (-2)^2 - 4(1)(-3)
--------------------------------------
2(1)
x = + 2 +/- sqrt [(4) - 4(-3)]
-------------------------------
2
x = +2 +/- sqrt [4 + 12]
--------------------------
2
x = +2 +/- sqrt[16]
-------------------
2
x = +2 +/- (4)
-------------
2
x = 2 + 4 or 2 -4
------- ------
2 2
x = 6/2 or -2/2
x = 3 or x = -1