1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
4 years ago
10

Evens ONLY!! Please show work and help!! Will mark brainliest!!

Mathematics
2 answers:
lora16 [44]4 years ago
5 0

QUESTION 1

(y^{5})^2


To simplify the above expression, we apply the laws of indices.

Recall that

(a^m)^{2}=a^m \times a^m

Therefore,

(y^{5})^2=y^{5} \times y^{5}


Now we apply the product rule of indices.

Recall again that;


a^m \times a^n=a^{m+n}


\Rightarrow (y^{5})^2=y^{5+5}


\Rightarrow (y^{5})^2=y^{10}


QUICK SOLUTION

Recall that;

(a^m)^{n}=a^(m\times n)


\Rightarrow (y^{5})^2=y^{5\times 2}


\Rightarrow (y^{5})^2=y^{10}


QUESTION 2


(n^{7})^4


To simplify the above expression, we apply the laws of indices.

Recall that;

(a^m)^{4}=a^m \times a^m\times a^m\times a^m

Therefore,

(n^{7})^4=n^{7}\times n^{7}\times n^{7}\timesn^{7}


Now we apply the product rule of indices.

a^m \times a^n=a^{m+n}


\Rightarrow (n^{7})^4=n^{7+7+7+7}


\Rightarrow (n^{7})^4=n^{28}


QUICK SOLUTION

Recall that;

(a^m)^{n}=a^{(m\times n)}


\Rightarrow (n^{4})^4=n^{7\times 4}


\Rightarrow (n^{7})^4=n^{28}


ANSWER TO QUESTION 3


(x^2)^5(x^3)


Let us use the law;

(a^m)^{n}=a^{(m\times n)}

to simplify the first part first while maintaining the right part for now.

\Rightarrow (x^2)^5(x^3)=(x^{2 \times 5})(x^3)


\Rightarrow (x^2)^5(x^3)=(x^{10})(x^3)



Now we apply the product rule of indices.

a^m \times a^n=a^{m+n}


\Rightarrow (x^2)^5(x^3)=x^{10+3}


\Rightarrow (x^2)^5(x^3)=x^{13}


ANSWER TO QUESTION 4

-3(ab^4)^3


We first share the index for each factor in the parenthesis.


\Rightarrow -3(ab^4)^3=-3(a^3)(b^4)^3


We now use the law,

(a^m)^{n}=a^{(m\times n)} for the right most factor.


\Rightarrow -3(ab^4)^3=-3(a^3)(b^{4\times 3})


\Rightarrow -3(ab^4)^3=-3a^3b^{12}


ANSWER TO QUESTION 5

(-3ab^4)^3


We first share the index for each factor in the parenthesis.


\Rightarrow (-3ab^4)^3=(-3)^3(a^3)(b^4)^3


We now use the law,

(a^m)^{n}=a^{(m\times n)} for the right most factor.


\Rightarrow (-3ab^4)^3=(-3)^3(a^3)(b^{4\times 3})


\Rightarrow (-3ab^4)^3=-27a^3b^{12}


ANSWER TO QUESTION 6


(4x^2b)^3


We  first share the exponent for each of the factors inside the parenthesis.

(4x^2b)^3=4^3 (x^2)^3 b^3


We now use the law,

(a^m)^{n}=a^{(m\times n)} for the middle factor.


(4x^2b)^3=4^3 \times x^{2 \times 3} b^3


(4x^2b)^3=64x^{6} b^3


ANSWER TO QUESTION 7

(4a^2)^2(b^3)


We share the exponent for each factor in the parenthesis.


(4a^2)^2(b^3)=(4)^2(a^2)^2(b^3)



We now use the law,

(a^m)^{n}=a^{(m\times n)} for the middle factor.


(4a^2)^2(b^3)=(4)^2(a^{2\times 2}(b^3)


\Rightarrow (4a^2)^2(b^3)=16a^{4}b^3


ANSWER TO QUESTION 8


(4x)^2(b^3)


We share the exponent for each factor in the parenthesis.


(4x)^2(b^3)=(4)^2(x^2)(b^3)


\Rightarrow (4a^2)^2(b^3)=16x^{2}b^3



ANSWER TO QUESTION 9


(x^2y^4)^5


We share the exponent for each factor in the parenthesis.

(x^2y^4)^5=(x^2)^5(y^4)^5


(x^2y^4)^5=(x^2)^5(y^4)^5



We now use the law,

(a^m)^{n}=a^{(m\times n)} to simplify each factor.

(x^2y^4)^5=(x^{2 \times 5})(y^{4 \times 5})


(x^2y^4)^5=(x^{10})(y^{20})


(x^2y^4)^5=x^{10}y^{20}



ANSWER TO QUESTION 10


(2a^3b^2)(b^3)^2


Recall that,


(a^m)^{n}=a^{(m\times n)}


(2a^3b^2)(b^3)^2=(2a^3b^2)(b^{3 \times 2})


(2a^3b^2)(b^3)^2=(2a^3b^2)(b^{6})


(2a^3b^2)(b^3)^2=(2a^3b^2)(b^{6})


We apply the product law to get,


(2a^3b^2)(b^3)^2=2a^3b^{2+6}


(2a^3b^2)(b^3)^2=2a^3b^{8}


ANSWER TO QUESTION 11


(-4xy)^3(-2x^2)^3


We share the index for each factor to get,


(-4xy)^3(-2x^2)^3=(-4)^3(x^3)(y^3)(-2)^3(x^2)^3


We simplify to get,


(-4xy)^3(-2x^2)^3=-64x^3y^3\times -8x^6

Applying the product rule gives,

(-4xy)^3(-2x^2)^3=-64\times -8 x^{3+6}y^3


(-4xy)^3(-2x^2)^3=512x^{9}y^3


ANSWER 12


(-3j^2k^3)^2(2j^2k)^3


We split the index for each factor.

(-3j^2k^3)^2(2j^2k)^3=(-3)^2(j^2)^2(k^3)^2(2^3)(j^2)^3(k^3)

We simplify to get,

(-3j^2k^3)^2(2j^2k)^3=9\times 8(j^4)(k^6)(j^6)(k^3)

(-3j^2k^3)^2(2j^2k)^3=72j^{4+6}k^{6+3}


(-3j^2k^3)^2(2j^2k)^3=72j^{10}k^{9}


ANSWER 13

(25a^2b)^3(\frac{1}{5}abf)^2

We share the index.

(25a^2b)^3(\frac{1}{5}abf)^2=(25^3)(a^2)^3(b^3)(\frac{1}{5})^2a^2b^2f^2)


(25a^2b)^3(\frac{1}{5}abf)^2=(25^3)\times (\frac{1}{25}) (a^6)(b^3)a^2b^2f^2


(25a^2b)^3(\frac{1}{5}abf)^2=625 (a^{6+2}b^{3+2})


(25a^2b)^3(\frac{1}{5}abf)^2=625 (a^{8}b^{5})


ANSWER 14.

(2xy)^2(-3x^2)(4y^4)=2^2x^2y^2(-3x^2)(4y^4)


(2xy)^2(-3x^2)(4y^4)=4\times -3\times 4 x^{2+2}y^{2+4}


(2xy)^2(-3x^2)(4y^4)=-48x^{4}y^{6}



SEE ATTACHMENT FOR CONTINUATION




















vaieri [72.5K]4 years ago
3 0

Answer:

120= t875''''''''''


Step-by-step explanation:


You might be interested in
Rewrite exponential expressions
ddd [48]

Answer:

Step-by-step explanation:

4 0
2 years ago
What is the relationship between angle 8 and angle 4
bulgar [2K]

Answer:

Corresponding angles.

4 0
4 years ago
After a 15% increase, a town has 115 people. What was the population before the increase?
Arte-miy333 [17]

Answer:

100 people

Step-by-step explanation:

<em>Population</em><em> </em><em>Of</em><em> </em><em>People</em><em>=</em><em>1</em><em>1</em><em>5</em><em>Percentage</em><em>ncrease</em><em>=</em><em>1</em><em>5</em><em>%</em>

<em>The</em><em> </em><em>New</em><em> </em><em>Population </em><em>corresponds </em><em>to</em><em> </em><em>1</em><em>1</em><em>5</em><em>%</em>

<em>(</em><em>That</em><em> </em><em>is</em><em> </em><em>1</em><em>0</em><em>0</em><em>+</em><em>1</em><em>5</em><em>)</em>

<em>We</em><em> </em><em>want</em><em> </em><em>to </em><em>find</em><em> </em><em>the</em><em> </em><em>popula</em><em>tion</em><em> </em><em>that</em><em> </em><em>corresponds</em><em> </em><em>to </em><em>100%</em><em> </em><em>that </em><em>is </em><em>the</em><em> </em><em>original</em><em> </em><em>population</em><em>.</em>

<em>Therefore</em><em> </em><em>Original </em><em>Population</em><em>;</em>

<em>\frac{100}{115}\times {115}{}</em>

<em>100 \: people</em>

7 0
3 years ago
Can you help me with this please?​
mixas84 [53]

Answer and Step-by-step explanation:

Task: Triangle T reflects on to the (-x, +y) plane.

We will call the point on (3, 4) as Point A.

We will call the point on (3, 2) as Point B.

We will call the point on (4, 2) as Point C.

Task a: Triangle U

Point A - (3, -4)

Point B - (3, -2)

Point C - (4, -2)

Task b: Triangle V

Point A - (-3, -4)

Point B - (-3, -2)

Point C - (-4, -2)

6 0
3 years ago
Pls help me!!! ASAP!
olga nikolaevna [1]

Answer:

Make sure to go to the website for the national books they have hints and answers!

Step-by-step explanation:

search up the book's name and go to the website

8 0
3 years ago
Read 2 more answers
Other questions:
  • Which expression represents the area of the shaded rectangle?
    12·2 answers
  • Solve the quadratic equation.<br> (x + 1)2 = 16<br> x = 3 or-5<br> x= -3 or 5<br> X = 35
    10·1 answer
  • The null and alternative hypotheses for a population proportion, as well as the sample results, are given. Use StatKey or other
    14·1 answer
  • The following data summarizes
    10·2 answers
  • Can a rectangle may or may not be a square
    14·2 answers
  • Please help me out with this!
    12·1 answer
  • Find the area of the larger rectangle.
    13·1 answer
  • A water sprinkler sprays water outward in a circular pattern. What square feet will be watered if the radius of the spray from t
    10·1 answer
  • A staircase is
    14·1 answer
  • 3
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!