Answer:
Let coordinates of vertex D be (x,y)
In parallelogram diagonals are bisect each other.
∴ Mid-point of AC= Mid-point of BD
⇒ (
2
3+(−6)
,
2
−4+2
)=(
2
−1+x
,
2
−3+y
)
⇒ (
2
−3
,
2
−2
)=(
2
−1+x
,
2
−3+y
)
⇒ (
2
−3
,−1)=(
2
−1+x
,
2
−3+y
)
Now,
⇒
2
−3
=
2
−1+x
⇒ −6=−2+2x
⇒ −4=2x
∴ x=−2
⇒ −1=
2
−3+y
⇒ −2=−3+y
⇒ 1=y
∴ y=1
∴ Coordinates of vertex D is (−2,1)
Find an explicit formula for the sequence 30\,,\,150\,,\,750\,,\,3750,...30,150,750,3750,...30, space, comma, space, 150, space,
OverLord2011 [107]
The series shown is an geometric series and the explicit formula is given by:
an=ar^(n-1)
where
a=first term
n=number of terms
r=common ratio
from the sequence:
a=30
r=5
thus the explicit formula will be:
an=30(5)^(n-1)
hence the answer is:
an=30(5)^(n-1)