Answer:
<em>The speed of sound at 20°C is 343.42 m/s.</em>
<em>You have to wait 1.75 seconds to hear the sound of the bat hitting the ball</em>
Step-by-step explanation:
<u>Speed of Sound</u>
The speed of sound is not constant with temperature. Generally speaking, the greater the temperature, the greater the speed of sound.
The approximate speed of sound in dry air at temperatures T near 0°C is calculated from:

The air is at T=20°C, thus the speed of sound is:


The speed of sound at 20°C is 343.42 m/s.
To calculate the time to hear the sound after the batter hits the ball, we use the formula of constant speed motion:

Where d is the distance and t is the time. Solving for t:

Substituting the values v=343.42 m/s and d=600 m:

t = 1.75 s
You have to wait 1.75 seconds to hear the sound of the bat hitting the ball
Answer:
attached below
Step-by-step explanation:
Applying the rule of logical equivalences
attached below is a detailed solution ( written as a numbered sequence of statements )
Answer:
H0 : μ1 - μ2 = 0
H1 : μ1 - μ2 ≠ 0
-1. 34
0.1837
Step-by-step explanation:
Full time :
n1 = 125
x1 = 2.7386
s1 = 0.65342
Part time :
n2 = 88
x2 = 2.8439
s2 = 0.49241
H0 : μ1 - μ2 = 0
H1 : μ1 - μ2 ≠ 0
Test statistic :
The test statistic :
(x1 - x2) / sqrt[(s1²/n1 + s2²/n2)]
(2.7386 - 2.8439) / sqrt[(0.65342²/125 + 0.49241²/88)]
−0.1053 / sqrt(0.0034156615712 + 0.0027553)
-0.1053 /0.0785554
= - 1.34
Test statistic = - 1.34
The Pvalue :
Using df = smaller n - 1 = 88 - 1 = 87
Pvalue from test statistic score ;
Pvalue = 0.1837
Pvalue > α ; We fail to reject the null and conclude that the GPA does not differ.
At α = 0.01 ; the result is insignificant
Answer 28 because you plug it in for your answer.