25 less than or equal too 300,not really enough information
<span>sum of -2 and d: d - 2
</span><span>The quotient of -18 and the sum of -2 and d: - 18 / (d - 2)
answer
</span> - 18
---------
d - 2
The measure of the seventh <em>interior</em> angle of the heptagon is 124°. (Correct choice: C)
<h3>What is the measure of the missing interior angle in a heptagon?</h3>
Heptagons are polygons with seven sides, seven vertices, seven <em>interior</em> angles and seven <em>central</em> angles. Herein we know the value of the sum of six interior angles and we need to know the measure of the seventh <em>interior</em> angle. We can determine the measure of the seven interior angles by using the following expression:
θ = (n - 2) · 180°, where n is the number of sides of the polygon. (1)
If we know that n = 7, then sum of the internal angles in the heptagon is:
θ = (7 - 2) · 180°
θ = 900°
And the measure of the final interior angle is found by subtraction:
θ₇ = 900° - 776°
θ₇ = 124°
The measure of the seventh <em>interior</em> angle of the heptagon is 124°. (Correct choice: C)
To learn more on polygons: brainly.com/question/17756657
#SPJ1
(3x^2- 5)(x^2+2) that is the answer
The main rule to apply here is:
(i)
![\displaystyle{ a^ {\displaystyle{ (\frac{b}{c})} }= \displaystyle{ \sqrt[c]{a^b}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%20a%5E%20%7B%5Cdisplaystyle%7B%20%28%5Cfrac%7Bb%7D%7Bc%7D%29%7D%20%7D%3D%20%5Cdisplaystyle%7B%20%5Csqrt%5Bc%5D%7Ba%5Eb%7D%20)
(ii)If c=2, then we write the following

.
According to these rules:
![\displaystyle{ 5^ {\displaystyle{ (\frac{2}{3})} }= \displaystyle{ \sqrt[3]{5^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%205%5E%20%7B%5Cdisplaystyle%7B%20%28%5Cfrac%7B2%7D%7B3%7D%29%7D%20%7D%3D%20%5Cdisplaystyle%7B%20%5Csqrt%5B3%5D%7B5%5E2%7D%20)
.

.
![\displaystyle{ 3^ {\displaystyle{ (\frac{2}{5})} }= \displaystyle{ \sqrt[5]{3^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%203%5E%20%7B%5Cdisplaystyle%7B%20%28%5Cfrac%7B2%7D%7B5%7D%29%7D%20%7D%3D%20%5Cdisplaystyle%7B%20%5Csqrt%5B5%5D%7B3%5E2%7D%20)
.

.