1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rufina [12.5K]
3 years ago
7

10k-10-6a+4a+a+0+0+0​

Mathematics
2 answers:
cluponka [151]3 years ago
5 0

Answer:

simplified 10k-1a-10

Step-by-step explanation:

Simplified

scoundrel [369]3 years ago
3 0

Answer:

there is no = sign so there isn't a answer.

Step-by-step explanation:

but the answer is 9988

You might be interested in
Mental Math A typical tip in a restaurant is 15% of the total bill. If the bill is $120, what would the typical tip be? The typi
pychu [463]

Answer:

18 dollars and zero cents

Step-by-step explanation:

120×15%

4 0
3 years ago
Read 2 more answers
Find the rate of interest per annum when<br> 1. P= 900<br> T= 2 years<br> S.l. = 90
Bas_tet [7]

Answer:

5% p.a will rate of interest

6 0
4 years ago
Fight!Fight!Fight!
Nadya [2.5K]

Answer: What does this mean?

<u><em>Step-by-step explanation: WHAT THE  DOES THIS MEAN ????????!!!!!</em></u>!

6 0
2 years ago
Read 2 more answers
Unit 3 parallel and perpendicular lines homework 4 parallel line proofs
Alex17521 [72]

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

6 0
3 years ago
How to find domain and range of a parabola?
german
The domain is the value of x, the range is the value of y.
A parabola opens infinitely to the right and left, so x can be any number, the domain is all real numbers
Vertically, however, a parabola opens only one way, either upward or downward. when it opens upward from a a certain level, say, the lower point (the vertex) has a y coordinate of 2, we say the range is all real numbers larger than or equal to 2, or y≥2. When it opens downward, we say the range is all real numbers smaller or equal to 2, y≤2
8 0
3 years ago
Other questions:
  • Using the factoring process, what constant is added to the right side of the quadratic equation 3x2+4x+_=1+_ in order to solve b
    15·1 answer
  • What is the area of a circle if the circumference is 30cm (express your answer in centimetres)
    6·1 answer
  • What are the amplitude, period, and midline of f(x)=-4 cos (2x-n)+3?
    11·1 answer
  • The ski club wants to take in at least $100 in profit for the bus to Holiday Valley. Students pay $5 to ride the bus and chapero
    7·1 answer
  • Complete the equation of the line through 2,1 and 5,-8
    7·2 answers
  • How do you right an algebraic expression for “0.8 more than c times 10”
    7·1 answer
  • What is the minimum possible value for y in the equation y = x^2 + 12x + 5?
    13·1 answer
  • Write the equation of the line in slope-intercept form (y = mx + b) that has a slope of 4 and passes through the point (0,2).
    12·1 answer
  • The distance across a two lane road
    6·1 answer
  • What is the perimeter of a rectangle whose length is twice the width? Width = 7 cm.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!