Answer:
Q2. (16,8)
Q3.
, ratio=5:1
Q4. Ratio=2:1
Q5. Ratio=1:1
Step-by-step explanation:
Q2. Let (2a,a) be the coordinates of P.
Since P is equidistant from Q (2,-5) and R (-3, 6), we have
![|PQ|=|PR|](https://tex.z-dn.net/?f=%7CPQ%7C%3D%7CPR%7C)
This gives us:
![\sqrt{(2a-2)^2+(a+5)^2}=\sqrt{(2a+3)^2+(6-a)^2}](https://tex.z-dn.net/?f=%5Csqrt%7B%282a-2%29%5E2%2B%28a%2B5%29%5E2%7D%3D%5Csqrt%7B%282a%2B3%29%5E2%2B%286-a%29%5E2%7D)
![\implies (2a-2)^2+(a+5)^2=(2a+3)^2+(6-a)^2](https://tex.z-dn.net/?f=%5Cimplies%20%282a-2%29%5E2%2B%28a%2B5%29%5E2%3D%282a%2B3%29%5E2%2B%286-a%29%5E2)
Expand:
![4a^2-8a+4+a^2+10a+25=4a^2+12a+9+a^2 -12a+36](https://tex.z-dn.net/?f=4a%5E2-8a%2B4%2Ba%5E2%2B10a%2B25%3D4a%5E2%2B12a%2B9%2Ba%5E2%20-12a%2B36)
![2a=16](https://tex.z-dn.net/?f=2a%3D16)
![a=8](https://tex.z-dn.net/?f=a%3D8)
The coordinates of P are ![(16,8)](https://tex.z-dn.net/?f=%2816%2C8%29)
Q.3 The equation of the line segment joining the points
A (5.-6) and B (-1,-4) is
.
The x-coordinate of the point that divides AB in the ratio m:n is
![x=\frac{mx_2+nx_1}{m+n}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7Bmx_2%2Bnx_1%7D%7Bm%2Bn%7D)
The y-axis meets this line at ![(0,-\frac{13}{3})](https://tex.z-dn.net/?f=%280%2C-%5Cfrac%7B13%7D%7B3%7D%29)
We substitute
into this equation and solve for m and n.
![0=\frac{-m+5n}{m+n}](https://tex.z-dn.net/?f=0%3D%5Cfrac%7B-m%2B5n%7D%7Bm%2Bn%7D)
![m=5n](https://tex.z-dn.net/?f=m%3D5n)
![\frac{m}{n}=\frac{5}{1}](https://tex.z-dn.net/?f=%5Cfrac%7Bm%7D%7Bn%7D%3D%5Cfrac%7B5%7D%7B1%7D)
Therefore the ratio is m:n=5:1
Q.4 The equation of the line segment joining
the points (-5,-4) and (-2,3) is
.
The point (-3, k) must satisfy this line because it lies on it.
.
![\implies k=\frac{2}{3}](https://tex.z-dn.net/?f=%5Cimplies%20k%3D%5Cfrac%7B2%7D%7B3%7D)
We again use the equation
to find the given ratio.
Substitute: ![x_2=-2,x_1=-5](https://tex.z-dn.net/?f=x_2%3D-2%2Cx_1%3D-5)
![4=\frac{-2m+-5n}{m+n}](https://tex.z-dn.net/?f=4%3D%5Cfrac%7B-2m%2B-5n%7D%7Bm%2Bn%7D)
![\implies m=2n](https://tex.z-dn.net/?f=%5Cimplies%20m%3D2n)
![\frac{m}{n}= \frac{2}{1}](https://tex.z-dn.net/?f=%5Cfrac%7Bm%7D%7Bn%7D%3D%20%5Cfrac%7B2%7D%7B1%7D)
The ratio is m:n=2:1
Q. 5 The equation of the line joining A (2,3) and B(6,-3) is
.
We substitute (4,m) to get:
12+4m=12
4m=0
m=0
It is obvious that: (4,0) is the midpoint of A(2,3) and B(6,-3).
Hence the ratio is 1:1