Plan A costs a total of $95 since it says $95 for unlimited talk and text.
Plan B:
(.10 x 800) + (.05 x 1000)
The (.10 x 800) represents 10 cents per talk minute for 800 minutes.
The (.05 x 1000) represents 5 cents per text message for 1000 text messages.
Solve:
.10 x 800 = 80
.05 x 1000 = 50
80 + 50 = 130
This means Plan B will cost him $130 under these conditions.
Plan C:
20 + ((.05 x 800)+(.05 x 1000))
The 20 + represents a flat rate of $20 per month.
The (.05 x 800) represents 5 cents per call minute.
The (.05 x 1000) represents 5 cents per text.
Solve:
.05 x 800 = 40
.05 x 1000 = 50
20 + 40 + 50 = 110
This means Plan C will cost him $110 under these conditions.
Plan D:
45 + (.10(800 - 500))
The 45 + represents a flat monthly rate of $45.
The (800 - 500) represents how many minutes he has to pay for with the 500 free.
The .10 is the cost per extra minute.
Solve:
800 - 500 = 300
.10 x 300 = 30
45 + 30 = 75
This means Plan D will cost him $75 under these conditions.
In short:
Plan A- $95
Plan B- $130
Plan C- $110
Plan D- $75
The least expensive among these is Plan D, which only costs $75 per month.
Answer:
Step-by-step explanation:
Your answer will be 3.7w-2
Answer:
1.)
≈ 3.652
2.) I would say something about how the A in front of cos in the equation would change to 90, rather than stay 75 (in the equation for the step by step), but it would be easier to just use the Pythagorean theorem.
Step-by-step explanation:
I think we may have the same class so hopefully this helps:
1.)
--> law of cosines formula.
--> plugged in numbers; when you draw the triangle, the included angle would be A, and the opposite side would be a. B and b, and C and c are opposite each other. In this case, a is the hypotenuse.
--> in between steps.
--> more simplifying.
--> answer
2.) This one is just an explanation: The 75 in the equation is the given angle, which is a. If this changes, it would just change in the equation too. And obviously, if it's 90 degrees, you can just use Pythagorean theorem a^2+b^2=c^2.
Good luck! :)
Answer: The required system of equations representing the given situation is

Step-by-step explanation: Given that Sam needs to make a long-distance call from a pay phone.
We are to write a system to represent the situation.
Let x represent the number of minutes Sam talked on the phone and y represents the total amount that he paid for the call.
According to the given information,
with prepaid phone card, Sam will be charged $1.00 to connect and $0.50 per minute.
So, the equation representing this situation is

Also, if Sam places a collect call with the operator he will be charged $3.00 to connect and $0.25 per minute.
So, the equation representing this situation is

Thus, the required system of equations representing the given situation is
