Answer:
1.7 mL
Explanation:
<em>A chemist must prepare 550.0 mL of hydrochloric acid solution with a pH of 1.60 at 25 °C. He will do this in three steps: Fill a 550.0 mL volumetric flask about halfway with distilled water. Measure out a small volume of concentrated (8.0 M) stock hydrochloric acid solution and add it to the flask. Fill the flask to the mark with distilled water. Calculate the volume of concentrated hydrochloric acid that the chemist must measure out in the second step. Round your answer to 2 significant digits.</em>
Step 1: Calculate [H⁺] in the dilute solution
We will use the following expresion.
pH = -log [H⁺]
[H⁺] = antilog - pH = antilog -1.60 = 0.0251 M
Since HCl is a strong monoprotic acid, the concentration of HCl in the dilute solution is 0.0251 M.
Step 2: Calculate the volume of the concentrated HCl solution
We want to prepare 550.0 mL of a 0.0251 M HCl solution. We can calculate the volume of the 8.0 M solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂/C₁
V₁ = 0.0251 M × 550.0 mL/8.0 M = 1.7 mL
Assuming it's a perfect gas, we have PV=nRT hence if T goes down, V goes down up. The volume will decrease.
Water is molecule formed by the covalent bonding of two atoms of hydrogen with one atom of oxygen. The chemical and physical properties of water are different from each of it's constituent elements Oxygen and Hydrogen. The properties of a drop of water will depend on the simplest unit of water, which is the water molecule
. Therefore, the smallest unit of the water drop that retains all the physical and chemical properties exhibited by a sample of water is the molecule.
Answer:
Roughly C100 H140 N3 O
Explanation:
Gilsonite is a bituminous product that resembles shiny black obsidian.
It contains more than 100 elements.
Its mass composition varies but is approximately 84 % C, 10 % H, 3 % N, and 1 % O.
Its empirical formula is roughly C100 H140 N3 O.