Answer:
45
Step-by-step explanation:
AEF is a similar triangle to ABC. that means it has the same angles, and the sides (and all other lines in the triangle) are scaled from the ABC length to the AEF length by the same factor f.
now, what is f ?
we know this from the relation of AC to FA.
FA = 12 mm
AC = 12 + 28 = 40 mm
so, going from AC to FA we multiply AC by f so that
AC × f = FA
40 × f = 12
f = 12/40 = 3/10
all other sides, heights, ... if ABC translate to their smaller counterparts in AEF by that multiplication with f (= 3/10).
the area of a triangle is
baseline × height / 2
aABC = 500
and because of the similarity we don't need to calculate the side and height in absolute numbers. we can use the relative sizes by referring to the original dimensions and the scaling factor f.
baseline small = baseline large × f
height small = height large × f
we know that
baseline large × height large / 2 = 500
baseline large × height large = 1000
aAEF = baseline small × height small / 2 =
= baseline large × f × height large × f / 2 =
= baseline large × height large × f² / 2 =
= 1000 × f² / 2 = 500 × f² = 500 ×(3/10)² =
= 500 × 9/100 = 5 × 9 = 45 mm²
Answer:
FBC
Step-by-step explanation:
It's the only one at the front of the box
Answer:
0.53333...
Step-by-step explanation:
If Sa=2πrh+2π
v=π
then the surface area is π
and volume is
(rh-2h)/2r.
Given Sa=2πrh+2π
=π
.
We have to find surface area and volume from the given expression.
Volume is basically amount of substance a container can hold in its capacity.
First we will find the value of v from the expression. Because they are in equal to each other, we can easily find the value of v.
2πrh+2π
v=π
h
Keeping the term containing v at left side and take all other to right side.
2π
v=π
-2πrh
v=(π
h-2πrh)/2π
v=π
/2π
-2πrh/2π
v=h/2-h/r
v=h(r-2)/2r
Put the value of v in Sa=2πrh+2π
Sa=2πrh+2π
*h(r-2)/2r
=2πrh+2πrh(r-2)/2
=2πrh+πrh(r-2)
=2πrh+π
h-2πrh
=π
h
Hence surface area is π
h and volume is h(r-2)/2.
Learn more about surface area at brainly.com/question/16519513
#SPJ4