2.6373 x 10 to the 4th power
Answer:
Use the distance formula on both points AC and AB.
<em>Distance formula is this</em><em>:</em>
<em>\begin{gathered}d=\sqrt{(x2-x1)^2+(y2-y1)^2} \\\\d=\sqrt{(1--5)^2+(8--7)^2} \\\\d=\sqrt{(6)^2+(15)^2} \\\\d=\sqrt{36+225} \\\\d=\sqrt{261} \\\\\end{gathered}d=(x2−x1)2+(y2−y1)2d=(1−−5)2+(8−−7)2d=(6)2+(15)2d=36+225d=261</em>
Distance for AC is 16.16
Now do the same with the numbers for AB and get the distance of 5.39
2. To get the area, use the formula 1/2 x base x height
AB is the base and AC is the height.
1/2 x 16.16 x 5.39 = 43.55
the answer is 43.5
11. You’ve done it correctly
12. Let x^2=y
y^2+13y+40=0
(y+8)(y+5)=0
y=8, 5
Since y=x^2
x^2=8 x^2=5
x=+/-√5 x= +/-2√2
13. x^4-x^2-x^2-8=0
x^4-2x^2-8=0
let x^2=y
Y^2-2y-8=0
(y-4)(y+2)=0
y=4, -2
Since y=x^2
X^2=4 X^2=-2
X= +/- 2 This wouldn’t be a real solution
14. It’s pretty much the same process, just substitute y in for x^2. If you’re confused feel free to ask and I can do it, or you can put it through Photomath
15. You’re on the right track so I’m just going to continue from where you left off
x^2(4x+5)-4(x+5)=0
(x^2-4)(4x+5)=0
x= +/- 2 4x=5
x=5/4 or 1 1/4
Hope this helped :)
B is correct, and D is correct.
that is the answer to that question. Ive already done this question before and I got it right everytime
Yes the answer is ymb=y your welcome