Answer:
Let's talk through this a one step at a time.
*Since f(x) is concave-up with its vertex on the x-axis, we know f(x) ≥ 0.
*We also know that when we shift a function's domain by a positive number, we shift the function left and when we shift a function's domain by a negative number, we shift the function right. So f(x-5) is f(x) shifted to the right by 5.
*At this point, f(x-5) has its vertex at (5,0).
*When we negate f(x-5), the parabola becomes concave down yet the vertex remains at (5,0). Now we're at -f(x-5). At this point we have -f(x-5)≤0 with a range (-∞,0]
*If we add 2 to create g(x)=2-f(x-5), then we have a concave down parabola with its vertex shifted up by 2, at (5,2). So, g(x) is concave down with its vertex at (5,2). Hence
Answer:
angle 1 is 90 degrees because of the kite theorem:
THEOREM: If a quadrilateral is a kite, the diagonals are perpendicular.
angle 2 is 58 degrees because 180-90-32=58 degrees
Step-by-step explanation:
x° + 90° + 52.6 = 180°
<em>because</em><em> </em><em>a</em><em> </em><em>triangle</em><em> </em><em>adds</em><em> </em><em>up</em><em> </em><em>to</em><em> </em><em>1</em><em>8</em><em>0</em><em>°</em><em> </em><em>and </em><em>that</em><em> </em><em>spec</em><em>ific</em><em> </em><em>triangle</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>right</em><em> </em><em>angle </em><em>triangle</em><em> </em><em>which</em><em> </em><em>means</em><em> </em><em>that</em><em> </em><em>it</em><em> </em><em>consist</em><em>s</em><em> </em><em>of</em><em> </em><em>angle</em><em> </em><em>adding</em><em> </em><em>up</em><em> </em><em>to</em><em> </em><em>9</em><em>0</em><em>°</em>
Answer:
31
Step-by-step explanation:
(24/3)+(7x2)-(15/5)+(6*2)
8+(7x2)-(15/5)+(6*2)
8+14-(15/5)+(6*2)
8+14-3+(6*2)
8+14-3+12
22-3+12
19+12
31
Sorry if I did my math wrong :)