<u>Answer:</u>
<u>Step-by-step explanation:</u>
<em>Rule: An absolute value will always be positive. </em>
<em>=> Referring to the rule, the absolute value of |–3.25| is 3.25.</em>
Hoped this helped.

Answer:
To a power, elevated to something
Answer:



Step-by-step explanation:
<u>Optimizing With Derivatives
</u>
The procedure to optimize a function (find its maximum or minimum) consists in
:
- Produce a function which depends on only one variable
- Compute the first derivative and set it equal to 0
- Find the values for the variable, called critical points
- Compute the second derivative
- Evaluate the second derivative in the critical points. If it results positive, the critical point is a minimum, if it's negative, the critical point is a maximum
We know a cylinder has a volume of 4
. The volume of a cylinder is given by

Equating it to 4

Let's solve for h

A cylinder with an open-top has only one circle as the shape of the lid and has a lateral area computed as a rectangle of height h and base equal to the length of a circle. Thus, the total area of the material to make the cylinder is

Replacing the formula of h

Simplifying

We have the function of the area in terms of one variable. Now we compute the first derivative and equal it to zero

Rearranging

Solving for r

![\displaystyle r=\sqrt[3]{\frac{4}{\pi }}\approx 1.084\ feet](https://tex.z-dn.net/?f=%5Cdisplaystyle%20r%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%7D%7B%5Cpi%20%7D%7D%5Capprox%201.084%5C%20feet)
Computing h

We can see the height and the radius are of the same size. We check if the critical point is a maximum or a minimum by computing the second derivative

We can see it will be always positive regardless of the value of r (assumed positive too), so the critical point is a minimum.
The minimum area is


Answer:
16
Step-by-step explanation:
x = number of footballs he can order
22*x + 13 (shipping fee) = 277
22x = 264 Subtract 13 from both sides
x = 16 Divide both sides by 22
Our solution is 16 footballs
Answer :D
2530
Question explanation:

<em>I'm truly sorry if this is incorrect - Answered by Lilo</em>