Answer:
1
Step-by-step explanation:
move up one and over one, 1/1 = 1
Solve for m:
1.6 m - 4.8 = -1.6 m
Add 1.6 m to both sides:
1.6 m + 1.6 m - 4.8 = 1.6 m - 1.6 m
1.6 m - 1.6 m = 0:
1.6 m + 1.6 m - 4.8 = 0
1.6 m + 1.6 m = 3.2 m:
3.2 m - 4.8 = 0
Add 4.8 to both sides:
3.2 m + (-4.8 + 4.8) = 4.8
4.8 - 4.8 = 0:
3.2 m = 4.8
Divide both sides of 3.2 m = 4.8 by 3.2:
(3.2 m)/3.2 = 4.8/3.2
3.2/3.2 = 1:
m = 4.8/3.2
4.8/3.2 ≈ 1.5:
Answer: m ≈ 1.5
Answer:
B.77.4%
Step-by-step explanation:
Mean wage (μ) = $4.50
Standard deviation (σ) = $0.50
For nay given salary X, the z-score is given by:

For X = $3.75, the z-score is:

For X = $5.00, the z-score is:

A z-score of -1.5 corresponds to the 6.68th percentile, while a score of 1 corresponds to the 84.13th percentile. Therefore, the percentage of workers getting paid between $3.75 and $5.00 an hour is:

The answer is alternative B.77.4%
Okay I think there has been a transcription issue here because it appears to me there are two answers. However I can spot where some brackets might be missing, bear with me on that.
A direct variation, a phrase I haven't heard before, sounds a lot like a direct proportion, something I am familiar with. A direct proportion satisfies two criteria:
The gradient of the function is constant s the independent variable (x) varies
The graph passes through the origin. That is to say when x = 0, y = 0.
Looking at these graphs, two can immediately be ruled out. Clearly A and D pass through the origin, and the gradient is constant because they are linear functions, so they are direct variations.
This leaves B and C. The graph of 1/x does not have a constant gradient, so any stretch of this graph (to y = k/x for some constant k) will similarly not be direct variation. Indeed there is a special name for this function, inverse proportion/variation. It appears both B and C are inverse proportion, however if I interpret B as y = (2/5)x instead, it is actually linear.
This leaves C as the odd one out.
I hope this helps you :)