Answer:
knowledge nothin' nothin' nothing nothin' nothin' mysterious mmysterious m
The formula we can use in
this case would be:
v = sqrt (T / (m / l))
Where,
v = is the velocity of the
transverse wave = unknown (?)
T = is the tension on the
rope = 500 N
m = is the mass of the
rope = 60.0 g = 0.06 kg
l = is the
length of the rope = 2.00 m
Substituting the given values into the equation to search
for the speed v:
v = sqrt (500 N/(0.06 kg /2 m))
v = sqrt (500 * 2 / 0.06)
v = sqrt (16,666.67)
<span>v = 129.10 m/s</span>
Answer:

Explanation:
Given that,
The spring constant of spring 1, 
The motion of the object on spring 1 has twice the amplitude as the motion of the object on spring 2, 
As the magnitude of the maximum velocity is the same in each case, it means the maximum kinetic energy is same in each case. In other words, the total energy is same.




So, the spring constant of spring 2 is 920 N/m. Hence, this is the required solution.
It is 10.20 m from the ground.
<u>Explanation:</u>
<u>Given:</u>
m = 0.5 kg
PE = 50 J
We know that the Potential energy is calculated by the formula:

where m is the is mass in kg; g is acceleration due to gravity which is 9.8 m/s and h is height in meters.
PE is the Potential Energy.
Potential Energy is the amount of energy stored when an object is stationary.
Here, if we substitute the values in the formula, we get

50 = 0.5 × 9.8 × h
50 = 4.9 × h

h = 10.20 m
The streets are illuminated with sodium vapor lights. hope this helps!!!!!!