Answer:


Explanation:
Given:
time of constant deceleration, 
A.
initial angular speed, 
<u>Using equation of motion:</u>



B.
Using eq. of motion for no. of revolutions, we have:



Answer:
14 m/s
Explanation:
We can solve the problem by using the law of conservation of energy.
At the beginning, when the ball is thrown from the ground, it has only kinetic energy, which is given by

where m = 5.9 kg is the mass of the ball and v is its initial speed.
As the ball goes up, its speed decreases, so its kinetic energy decreases and converts into gravitational potential energy. When the ball reaches its maximum height, the speed has become zero, and all the kinetic energy has been converted into gravitational potential energy, given by:

where g = 9.8 m/s^2 is the gravitational acceleration and h = 10 m is the maximum height reached by the ball.
Since we can ignore air resistance, energy must be conserved, so the initial kinetic energy must be equal to the final potential energy of the ball, so we can write:

And we can solve the equation to find v, the initial speed of the ball:

Answer:
The correct answer is "20 Volts".
Explanation:
Given:
Heat,
H = 100 J
Resistance,
R = 4 Ω
As we know,
⇒ 
By putting the values, we get
⇒ 
⇒ 
⇒ 
⇒ 
⇒
Answer:
He traveled 9km
Explanation:
To do this problem you need to use the equation which is Speed= distance/time and this problem gives you the speed which is 18 km/h and it gives you the time 1/2 hour so you write the equation 18= d/ 1/2 which his distance is 9km
Momentum - mass in motion
P=MV
P=(15,000 kg)(2.5 m/s)
P=37 500 kg x m/s to the north
Hope this helps