Answer:x+2y-12=0
Step-by-step explanation:
3x+6y=36
-36. -36
3x+6y-36=0
Divide by 3 to get
X+2x-12=0
Answer:
Therefore the concentration of salt in the incoming brine is 1.73 g/L.
Step-by-step explanation:
Here the amount of incoming and outgoing of water are equal. Then the amount of water in the tank remain same = 10 liters.
Let the concentration of salt be a gram/L
Let the amount salt in the tank at any time t be Q(t).
![\frac{dQ}{dt} =\textrm {incoming rate - outgoing rate}](https://tex.z-dn.net/?f=%5Cfrac%7BdQ%7D%7Bdt%7D%20%3D%5Ctextrm%20%7Bincoming%20rate%20-%20outgoing%20rate%7D)
Incoming rate = (a g/L)×(1 L/min)
=a g/min
The concentration of salt in the tank at any time t is =
g/L
Outgoing rate =
![\frac{Q(t)}{10} g/min](https://tex.z-dn.net/?f=%5Cfrac%7BQ%28t%29%7D%7B10%7D%20g%2Fmin)
![\frac{dQ}{dt} = a- \frac{Q(t)}{10}](https://tex.z-dn.net/?f=%5Cfrac%7BdQ%7D%7Bdt%7D%20%3D%20a-%20%5Cfrac%7BQ%28t%29%7D%7B10%7D)
![\Rightarrow \frac{dQ}{10a-Q(t)} =\frac{1}{10} dt](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cfrac%7BdQ%7D%7B10a-Q%28t%29%7D%20%3D%5Cfrac%7B1%7D%7B10%7D%20dt)
Integrating both sides
![\Rightarrow \int \frac{dQ}{10a-Q(t)} =\int\frac{1}{10} dt](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cint%20%5Cfrac%7BdQ%7D%7B10a-Q%28t%29%7D%20%3D%5Cint%5Cfrac%7B1%7D%7B10%7D%20dt)
[ where c arbitrary constant]
Initial condition when t= 20 , Q(t)= 15 gram
![\Rightarrow -log|10a-15|=\frac{1}{10}\times 20 +c](https://tex.z-dn.net/?f=%5CRightarrow%20-log%7C10a-15%7C%3D%5Cfrac%7B1%7D%7B10%7D%5Ctimes%2020%20%2Bc)
![\Rightarrow -log|10a-15|-2=c](https://tex.z-dn.net/?f=%5CRightarrow%20-log%7C10a-15%7C-2%3Dc)
Therefore ,
.......(1)
In the starting time t=0 and Q(t)=0
Putting t=0 and Q(t)=0 in equation (1) we get
![- log|10a|= -log|10a-15| -2](https://tex.z-dn.net/?f=-%20log%7C10a%7C%3D%20-log%7C10a-15%7C%20-2)
![\Rightarrow- log|10a|+log|10a-15|= -2](https://tex.z-dn.net/?f=%5CRightarrow-%20log%7C10a%7C%2Blog%7C10a-15%7C%3D%20-2)
![\Rightarrow log|\frac{10a-15}{10a}|= -2](https://tex.z-dn.net/?f=%5CRightarrow%20log%7C%5Cfrac%7B10a-15%7D%7B10a%7D%7C%3D%20-2)
![\Rightarrow |\frac{10a-15}{10a}|=e ^{-2}](https://tex.z-dn.net/?f=%5CRightarrow%20%7C%5Cfrac%7B10a-15%7D%7B10a%7D%7C%3De%20%5E%7B-2%7D)
![\Rightarrow 1-\frac{15}{10a} =e^{-2}](https://tex.z-dn.net/?f=%5CRightarrow%201-%5Cfrac%7B15%7D%7B10a%7D%20%3De%5E%7B-2%7D)
![\Rightarrow \frac{15}{10a} =1-e^{-2}](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cfrac%7B15%7D%7B10a%7D%20%3D1-e%5E%7B-2%7D)
![\Rightarrow \frac{3}{2a} =1-e^{-2}](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cfrac%7B3%7D%7B2a%7D%20%3D1-e%5E%7B-2%7D)
![\Rightarrow2a= \frac{3}{1-e^{-2}}](https://tex.z-dn.net/?f=%5CRightarrow2a%3D%20%5Cfrac%7B3%7D%7B1-e%5E%7B-2%7D%7D)
![\Rightarrow a = 1.73](https://tex.z-dn.net/?f=%5CRightarrow%20a%20%3D%201.73)
Therefore the concentration of salt in the incoming brine is 1.73 g/L
Answer: $7.90
Step-by-step explanation:
When we see how much she spent on the total cost of renting skates, getting in, and getting hot chocolate, we can see that she is going to subtract all of that from the total cost.
$15.00 - 2.25 = 12.75
12.75 - 2.15 = 10.60
10.60 - 1.35 = 9.25
9.25 - 1.35 = 7.90 remaining
We know that she payed 2.25 to get in, 2.15 for skate rental, and 1.35 for each hot chocolate she purchased which in this case is 2. We need to subtract all of this from 15 and get the final answer
THERES NO MATH SO I CANT ANSWER YOUR QUESTION