The given complex number is ⇒ z = a + b i
The absolute value of z = √( a² + b² ) = 3.28
So, we will check which of the options will give 3.28
<span>( A) IF ⇒⇒ a=1.5 and b=1.7
</span>
<span>∴ √( a² + b² ) = √( 1.5² + 1.7²) = √5.14 ≈ 2.27
</span>
===================================
<span>(B) IF ⇒⇒ a=1.5 and b=3.3
</span>
<span>∴ √( a² + b² ) = √(1.5² + 3.3²) = √13.14 ≈ 3.62
</span>
====================================
<span>(C) IF ⇒⇒ a=1.7 and b=2.8
</span>
<span>∴ √( a² + b² ) = √(1.7² + 2.8²) = √10.73 ≈ 3.28
</span>
====================================
<span>(D) IF ⇒⇒ a=2.8 and b=3.3
</span>
∴ √( a² + b² ) = √(2.8² + 3.3²) = √18.73 ≈ 4.33
=====================================
So, the correct answer is option (C) <span>a=1.7,b=2.8</span>
Answer:
-7
Step-by-step explanation:
-13-(-6)
-13+6
-7
Answer:
should be 17
Step-by-step explanation:
Answer:
......Im pretty sure its -4
Answer:
a. 
b. 
Step-by-step explanation:
To solve this question, we apply implicit differentiation.
xy = 2
Applying the implicit differentiation:


a. Find dy/dt, when x = 4, given that dx/dt = 13.
x = 4
So



Then




b. Find dx/dt, when x = 1, given that dy/dt = -9.
x = 1
So


Then



