Answer:
A 5.00-g bullet is fired horizontally into a 1.20-kg wooden block resting on a horizontal surface. The coefficient of kinetic friction between block and surface is 0.20. The bullet remains embedded in the block, which is observed to slide 0.230 m along the surface before stopping.
Explanation:
There are known as B. meteorites: asteroids are much larger.
<span>here's a cheap trick
it would take the same time to accelerate from rest to top speed
as it would take to decelerate from top speed to zero
so
instead of
d = Vi t + 1/2 a t^2 where Vi is positive and a is negative
we'll use
Vi = 0 and a is positive
giving
85 = 0 + 1/2 (0.43) t^2 = 0.215 t^2
t^2 = 395.345
t = 19.88s or 20. s to 2 sig figs
or we ccould find Vi from
Vf*2 = Vi^2 + 2 a d
0 = Vi^2 + 2 (0.43) 85
Vi^2 = 71.4
Vi = 8.45m/s
then
85 = 8.45 t + 1/2 (-0.43) t^2
85 = 8.45 t - 0.215 t^2
0.215 t^2 - 8.45 + 85 = 0
t = 19.65s or 20. s to 2 s.f.(minor difference arises from rounding Vi)
or another cheap trick
when a is constant
Vavg = (Vf + Vi) /2 = 8.45/2 = 4.225
and
d = Vavg t
85 = 4.225 t
t = 20.12 or 20. s to 2 s.f. (minor differences from intermidiate roundings)
anyway you choose you get 20. s</span>
Answer:
Kindly find the graphs attached
Explanation:
For figure 1: There is a steady increase in the position of the object as time increases. This is because despite the negative acceleration (deceleration), the object continues to move and cover more ground as time goes by.
<em>The straight line graph is observed because the acceleration is constant and not varying.</em>
For Figure 2: The graph of velocity vs time will have an inverted nature. This is because since the object is decelerating, it is reducing in its velocity as time goes by (increases). <em>This is also in a straight line since the deceleration is constant.</em>
Answer:
Explanatioyour answers look right, but if there has , has to be another answer its a , but your answers are right