<h2>Answer:</h2>
A series circuit occurs when the elements are connected along a simple path so the same current flows through all the elements. On the other hand, a parallel circuit occurs when there are two or more paths for the electricity to flow. The diagram are shown in the Figure below. We have chosen a source and resistors to illustrate this problem.
Answer:
T=1.384×10⁶seconds
Explanation:
Given data
p (Intensity)=1.30 kw/m²
E (Energy)=1.8×10⁹ J
A (Area)=1.00 m²
T (Time required)=?
Solution
E=PT ................eq(i)
where E is energy
P is radiation power
T is time
Radiating Power is given as
P=pA
Where p is intensity
A is Area
Put P=pA in eq(i) we get
E=pAT
T=E/pA
The work W done by the electric field in moving the proton is equal to the difference in electric potential energy of the proton between its initial location and its final location, therefore:
where q is the charge of the proton,
, with
being the elementary charge, and
and
are the initial and final voltage.
Substituting, we get (in electronvolts):
and in Joule:
Answer:
1.92 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 200 Kg
Spring constant (K) = 10⁶ N/m
Workdone =?
Next, we shall determine the force exerted on the spring. This can be obtained as follow:
Mass (m) = 200 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = m × g
F = 200 × 9.8
F = 1960 N
Next we shall determine the extent to which the spring stretches. This can be obtained as follow:
Spring constant (K) = 10⁶ N/m
Force (F) = 1960 N
Extention (e) =?
F = Ke
1960 = 10⁶ × e
Divide both side by 10⁶
e = 1960 / 10⁶
e = 0.00196 m
Finally, we shall determine energy (Workdone) on the spring as follow:
Spring constant (K) = 10⁶ N/m
Extention (e) = 0.00196 m
Energy (E) =?
E = ½Ke²
E = ½ × 10⁶ × (0.00196)²
E = 1.92 J
Therefore, the Workdone on the spring is 1.92 J
C. A little backward, 100 or 110 degrees