1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aniked [119]
3 years ago
7

What is the side length,s, of the square?? A= 81​

Mathematics
1 answer:
spin [16.1K]3 years ago
4 0

Answer:

40.5

Step-by-step explanation:

A square has 4 sides that means that you have to divide the Area by 4.

81/4= 40.5

All sides of the square will have the side lengths of 40.5.

You might be interested in
Compare 9.36 and 9.359
Sati [7]

Try this option (this is not the only way!):

1. the rule: if 'number_1' - 'number_2' > 0, then number_1>number_2. If 'number_1'-'number_2'<0, then number_2>number_1.

2. according to the rule above: 9.36-9.359=0.001. 0.001>0, it means, 9.36>9.359.

6 0
3 years ago
3(×+2)=24 can you help me​
trapecia [35]

Answer:

x = 6 if that's what your asking

Step-by-step explanation:

please give brainliest

3 0
3 years ago
Read 2 more answers
Savannah has a granola Recipe that requires 1/3 pound of oats to make one batch of granola.If savannah uses 2/5 Pounds of oats w
VMariaS [17]

Answer:

only 1 batch

Step-by-step explanation:

4 0
3 years ago
HRW CAN U TRY I GIVE BRAINLYS.....
AlekseyPX
Answer:
i think the answer is C
8 0
3 years ago
How do I find the integral<br> ∫10(x−1)(x2+9)dxint10/((x-1)(x^2+9))dx ?
defon
\int\frac{10}{(x-1)(x^2+9)}\ dx=(*)\\\\\frac{10}{(x-1)(x^2+9)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+9}=\frac{A(x^2+9)+(Bx+C)(x-1)}{(x-1)(x^2+9)}\\\\=\frac{Ax^2+9A+Bx^2-Bx+Cx-C}{(x-1)(x^2+9)}=\frac{(A+B)x^2+(-B+C)x+(9A-C)}{(x-1)(x^2+9)}\\\Updownarrow\\10=(A+B)x^2+(-B+C)x+(9A-C)\\\Updownarrow\\A+B=0\ and\ -B+C=0\ and\ 9A-C=10\\A=-B\ and\ C=B\to9(-B)-B=10\to-10B=10\to B=-1\\A=-(-1)=1\ and\ C=-1

(*)=\int\left(\frac{1}{x-1}+\frac{-x-1}{x^2+9}\right)\ dx=\int\left(\frac{1}{x-1}-\frac{x+1}{x^2+9}\right)\ dx\\\\=\int\frac{1}{x-1}\ dx-\int\frac{x+1}{x^2+9}\ dx=\int\frac{1}{x-1}-\int\frac{x}{x^2+9}\ dx-\int\frac{1}{x^2+9}\ dx=(**)\\\\\#1\ \int\frac{1}{x-1}\ dx\Rightarrow\left|\begin{array}{ccc}x-1=t\\dx=dt\end{array}\right|\Rightarrow\int\frac{1}{t}\ dt=lnt+C_1=ln(x-1)+C_1

\#2\ \int\frac{x}{x^2+9}\ dx\Rightarrow  \left|\begin{array}{ccc}x^2+9=u\\2x\ dx=du\\x\ dx=\frac{1}{2}\ du\end{array}\right|\Rightarrow\int\left(\frac{1}{2}\cdot\frac{1}{u}\right)\ du=\frac{1}{2}\int\frac{1}{u}\ du\\\\\\=\frac{1}{2}ln(u)+C_2=\frac{1}{2}ln(x^2+9)+C_2

\#3\ \int\frac{1}{x^2+9}\ dx=\int\frac{1}{x^2+3^2}\ dx=\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C_3\\\\therefore:\\\\\#1;\ \#2;\ \#3\Rightarrow(**)=ln(x-1)+C_1-\frac{1}{2}ln(x^2+9)+C_2-\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C_3

\boxed{=ln(x-1)-\frac{1}{2}ln(x^2+9)-\frac{1}{3}tan^{-1}\left(\frac{x}{3}\right)+C}



4 0
4 years ago
Other questions:
  • What is the difference of the values of the two variables in this system of equations? y = 2x + 1 x + 3y = 10 A. 0 B. 1 C. 2 D.
    6·2 answers
  • Which has more people a car that is 3/4 full or a car that is 1/4 full
    5·2 answers
  • Based on the net shown below, what is the surface area of the pyramid to the nearest square inch. please show work
    10·1 answer
  • Which statement is true
    6·1 answer
  • Write the formula for the area of a triangle, A =1/2bh, in terms of h. Find the height of a triangle when A = 18in^2. and b=19in
    15·1 answer
  • If 25% of a number is 100, what is the number?<br> a) 50<br> b) 100<br> c)150<br> d) 200<br> e) 400
    5·1 answer
  • a recipe to make chocolate chip cookies calls for 2 eggs for every 12 ounces of chocolate chips if the chef wants to use 7 eggs
    14·1 answer
  • Can anyone explain how to find the square root of fractions? For example, √(5/6)^2<br> ​
    13·1 answer
  • There are 50 deer in a particular
    11·1 answer
  • Complete factorization x^3-2x^2+x-2
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!