Answer: 37
Explanation:
Order of operations says you do multiplication first, you get 4 • 10 = 40
Then do subtraction, so 40 - 3 = 37
Hope this helps!
Its right.................
<h3>
Answer: D. regular hexagon</h3>
A hexagon is composed of 6 congruent equilateral triangles. Each equilateral triangle has interior angle of 60 degrees. Adding 6 such angles together gets you to 360 degrees. So we've done one full rotation and covered every bit of the plane surrounding a given point. Extend this out and you'll be able to cover the plane. A similar situation happens with rectangles as well (think of a grid, or think of tiles on the wall or floor)
In contrast, a regular pentagon has interior angle 108 degrees. This is not a factor of 360, so there is no way to place regular pentagons to have them line up and not be a gap or overlap. This is why regular pentagons do not tessellate the plane. The same can be aside about decagons and octagons as well.
Answer: The area of the Polygon D is 36 times larger than the area of the Polygon C.
Step-by-step explanation:
<h3>
The complete exercise is: "Polygon D is a scaled copy of Polygon C using a scale factor of 6. How many times larger is the area of Polygon D than the area Polygon C"?</h3>
In order to solve this problem it is important to analize the information provided in the exercise.
You know that the Polygon D was obtained by multiplying the lengths of the Polygon C by the scale factor of 6.
Then, you can identify that the Length scale factor used is:

Now you have to find the Area scale factor.
Knowing that the Length scale factos is 6, you can say that the Area scale factor is:

Finally, evaluating, you get that this is:

Therefore, knowing the Area scale factor, you can determine that the area of the Polygon D is 36 times larger than the area of the Polygon C.
<span>Let A = the area of the whole circle
Let S = the area of the shaded portion</span><span>
The shaded area is a portion of the circle that is determined by the ratio of the shaded sector to the whole circle of 360 degrees, or
S = (60/360) </span>× <span>A = ( 1 / 6 ) </span>× 12 = 2 ;