Answer:
Step-by-step explanation:
Required to prove that:
Sin θ(Sec θ + Cosec θ)= tan θ+1
Steps:
Recall sec θ= 1/cos θ and cosec θ=1/sin θ
Substitution into the Left Hand Side gives:
Sin θ(Sec θ + Cosec θ)
= Sin θ(1/cos θ + 1/sinθ )
Expanding the Brackets
=sinθ/cos θ + sinθ/sinθ
=tanθ+1 which is the Right Hand Side as required.
Note that from trigonometry sinθ/cosθ = tan θ
Answer:
The vertex of the function is
Step-by-step explanation:
I've graphed this on desmos for a visual
3cd^2(6cd + 14cd^2)
18cd^3 + 42cd^4