<span>It is estimated that the city of Houston, Texas, will double in size every 35 years:
</span>P=Po(2)^(t/35)
<span>If the population is currently 2.4 million people:
Po=2.4 millions
</span><span>How many people will there be in 20 years?
t=20 years, P=?
P=(2.4 millions)(2)^(t/35)
P=(2.4 millions)(2)^(20/35)
P=(2.4 millions)(2)^(0.571428571)
P=(2.4 millions)(1.485994289)
P=3.566386294 millions
P=3.6 millions
Answer: There will be 3.6 million people in 20 years.</span>
Answer:
2, 240
Step-by-step explanation:
In the table, the values should be
Year 1 725
Year 2 579
Year 3 696
Since Year 4 sold 112% of the previous 3 years combined, we add 725+579+696=2000. We can find 112% by writing a proportion.

We solve through cross multiplication of numerator and denominator of the opposite fraction.

Answer:
None of them is true Please mark brailiest
Step-by-step explanation:
Answer:
85%
Step-by-step explanation:
The whole is 100 squares or 100%. Eighty-five squares are shaded in. 85/100 or 85% is the percentage! Hope this Helps!
The number of students would not change between before the test and after the test. 3+8 and 4+7 both = 11 so finding out how many students would equal one ratio can then be used to find how many equal 3 and 8.
If 92 students are equal to 4 in the ratio, then 1 in the ratio is worth 23 students. This is important as then when you times 23 by 7 you find out how many students there are in the regular maths class, 161 students. Plussing these two together gives you a total of 253 students.
Using this 253 you can divide it by 11 to find out how much 1 number would be in the ratio, it equals 23. Using this you can then times 23 by both 3 and 8 to find the original class sizes, 3x23 = 69, and 23x8 = 184.
Making the origional class size of the advaced class 69 studnets, and the regular maths class size 184.