Take x-2 and insert it into 2x^2 + 3x-2 where the x is located
2x^2 + 3x-2
2(x-2)^2 + 3(x-2)-2
Now work out 2(x-2)^2 + 3(x-2)-2 also follow PEMDAS
2(x-2)^2 + 3(x-2)-2
Since (x-2)^2 is an Exponent, lets work with that first and expand (x-2)^2.
(x-2)^2
(x -2)(x-2)
x^2 -4x + 4
Now Multiply that by 2 because we have that in 2(x-2)^2
(x-2)^2 = x^2 -4x + 4
2(x-2)^2 = 2(x^2 -4x + 4)
2(x^2 -4x + 4) = 2x^2 - 8x + 8
2x^2 - 8x + 8
Now that 2(x-2)^2 is done lets move on to 3(x-2).
Use the distributive property and distribute the 3
3(x-2) = 3x - 6
All that is left is the -2
Now lets put it all together
2(x-2)^2 + 3(x-2)-2
2x^2 - 8x + 8 + 3x - 6 - 2
Now combine all our like terms
2x^2 - 8x + 8 + 3x - 6 - 2
Combine: 2x^2 = 2x^2
Combine: -8x + 3x = -5x
Combine: 8 - 6 - 2 = 0
So all we have left is
2x^2 - 5x
The answer really depends on what b is. Unless you give me a number for what b equals I can’t solve it.
Answer:
1
Step-by-step explanation:
1. Convert the mixed number to an improper fraction to match the rest of the problem (this just makes it easier for now, the answer will still be a mixed number)
-1
becomes 
2. Re-write the new equation. When there is a "+" in front of a set of parentheses the expression doesn't change aside from removing the plus signs.
The new equation becomes

3. Calculate. Just work out the new expression.
The answer is 
4. Convert to a simplified mixed decimal.
27 goes into 20 once with seven left over, making the answer 1