Answer:
(A)∠A = 82.2°,∠C = 62.8°, c = 17.1
Step-by-step explanation:
In Triangle ABC
∠B=35°
a=19
b=11
Using Law of SInes
![\dfrac{a}{\sin A} =\dfrac{b}{\sin B} \\\dfrac{19}{\sin A} =\dfrac{11}{\sin 35^\circ} \\11*\sin A=19*\sin 35^\circ\\\sin A=(19*\sin 35^\circ) \div 11\\A= \arcsin [(19*\sin 35^\circ) \div 11]\\A=82.2^\circ](https://tex.z-dn.net/?f=%5Cdfrac%7Ba%7D%7B%5Csin%20A%7D%20%3D%5Cdfrac%7Bb%7D%7B%5Csin%20B%7D%20%5C%5C%5Cdfrac%7B19%7D%7B%5Csin%20A%7D%20%3D%5Cdfrac%7B11%7D%7B%5Csin%2035%5E%5Ccirc%7D%20%5C%5C11%2A%5Csin%20A%3D19%2A%5Csin%2035%5E%5Ccirc%5C%5C%5Csin%20A%3D%2819%2A%5Csin%2035%5E%5Ccirc%29%20%5Cdiv%2011%5C%5CA%3D%20%5Carcsin%20%5B%2819%2A%5Csin%2035%5E%5Ccirc%29%20%5Cdiv%2011%5D%5C%5CA%3D82.2%5E%5Ccirc)
Now:
![\angle A+\angle B+\angle C=180^\circ\\35^\circ+82.2^\circ+\angle C=180^\circ\\\angle C=180^\circ-[35^\circ+82.2^\circ]\\\angle C=62.8^\circ](https://tex.z-dn.net/?f=%5Cangle%20A%2B%5Cangle%20B%2B%5Cangle%20C%3D180%5E%5Ccirc%5C%5C35%5E%5Ccirc%2B82.2%5E%5Ccirc%2B%5Cangle%20C%3D180%5E%5Ccirc%5C%5C%5Cangle%20C%3D180%5E%5Ccirc-%5B35%5E%5Ccirc%2B82.2%5E%5Ccirc%5D%5C%5C%5Cangle%20C%3D62.8%5E%5Ccirc)
Using Law of Sines

Therefore:
∠A = 82.2°,∠C = 62.8°, c = 17.1
The correct option is A.
Answer:
g+-7
Step-by-step explanation:
Let's simplify step-by-step.
3g−8−(2g−1)
Distribute the Negative Sign:
=3g−8+−1(2g−1)
=3g+−8+−1(2g)+(−1)(−1)
=3g+−8+−2g+1
Combine Like Terms:
=3g+−8+−2g+1
=(3g+−2g)+(−8+1)
=g+−7
Answer:
(5,5)
Step-by-step explanation:
see where the dot lines up
Answer:
4.2 cents
Step-by-step explanation:
Take the total cost and divide by the number of ounces
1.01 /24
0.04208
Round to the nearest tenth of a cent ( 3 decimal places)
0.042
4.2 cents
Answer: c = \frac {d + ab} {a}
Step-by-step explanation:
For this case we have the following equation:
a (c - b) = d
We want to solve the equation for the letter c.
To do this, we apply the distributive property:
ac-ab = d
Then, applying addition property of equality we have:
ac = d + ab
Then applying division property of equality we have:
c = \frac {d + ab} {a}