Answer: The percent yield is, 93.4%
Explanation:
First we have to calculate the moles of Na.

Now we have to calculate the moles of 


The balanced chemical reaction is,

As, 1 mole of bromine react with = 2 moles of Sodium
So, 0.189 moles of bromine react with =
moles of Sodium
Thus bromine is the limiting reagent as it limits the formation of product and Na is the excess reagent.
As, 1 mole of bromine give = 2 moles of Sodium bromide
So, 0.189 moles of bromine give =
moles of Sodium bromide
Now we have to calculate the percent yield of reaction

Therefore, the percent yield is, 93.4%
Velocity is said to be constant if its magnitude as well direction at any instant is remains the same. In D, if you draw a line parallel to y-axis at any time t, you can see that velocity is same. Hence, D is the correct graph.
The kinetic energy of gaseous molecules is greater than that of liquid molecules. Therefore, in gas, kinetic energy overcomes the force of attraction between molecules. In short, in gas phase, particles move at high speed and hence they have less force of attraction. In case of liquid phase, particles are close enough as a result there is much more force of attraction compared to gaseous molecules. In liquid state, kinetic energy cannot overcome force of attraction therefore, liquid molecules slow down.
Therefore, B is the correct answer.
First calculate the mole fraction of each substance:
Acetone: 2.88 mol ÷ (2.88 mol + 1.45 mol) = 0.665
Cyclohexane: 1.45 ÷ (2.88 mol + 1.45 mol) = 0.335
Raoult's Law: P(total) = P(acetone) · χ(acetone) + P(cyclohexane) · χ(cyclohexane).
P(total) = 229.5 torr · 0.665 + 97.6 torr · 0.335
P(total) = 185.3 torr
χ for acetone: 229.5 torr · 0.665 ÷ 185.3 torr = 0.823
χ for cyclohexane: 97.6 torr · 0.335 ÷ 185.3 torr = 0.177
<span>My hypothesis is the the cell, having a higher osmolarity than the solution of of nacl in the beaker, will have an osmosis reaction releasing into the solution of nacl. This will continue until both cell and solution reach a balance.</span>
Answer: I don't know if this helps you or not, but this is from study.com:
I'm so sorry if it doesn't:
Explanation: Iron(III) oxide reacts with carbon monoxide according to the balanced equation:
Fe₂O₃ + 3CO ➡️ 2Fe + 3CO₂
A reaction mixture initially contains 23.00g Fe₂O₃ and 15.40g CO.