X represents the number that would be added to the silver cars.
x/40= 4
X=40x4
x=160
Subtract the given 20 from 160 because 160 is the total number
160-20=140
Therefore 140 would be added to 20 silver cars to get the ratio1:4
F(x)=(-2/((x+y-2)^(1/2))-(x+y+2)^(1/2)
the only irrational part of this expression is the (x+y-2)^(1/2) in the denominator, so, to rationalize this, you multiply the numerator and denominator by the denominator, as well as the other parts of the expression
also, you must multiply the -sqrt(x+y+2) by sqrt(x+y-2)/sqrt(x+y-2) to form a common denominator
(-2)/(x+y-2)^(1/2)-(x+y+2)^(1/2)(x+y-2)^(1/2)/(x+y-2)^(1/2)
(common denominator)
(-2-(x^2+xy+2x+xy+y^2+2y-2x-2y-4))/(x+y-2)^(1/2)
(FOIL)
(-2-x^2-y^2-2xy+4)/(x+y-2)^(1/2)
(Distribute negative)
(-x^2-y^2-2xy+2)/(x+y-2)^(1/2)
(Simplify numerator)
(-x^2-y^2-2xy+2)(x+y-2)^(1/2)/(x+y-2)^(1/2)(x+y-2)^(1/2)
(Rationalize denominator by multiplying both top and bottom by sqrt)
(-x^2-y^2-2xy+2)((x+y-2)^(1/2))/(x+y-2)
(The function is now rational)
=(-x^2-y^2-2xy+2)(sqrt(x+y-2))/(x+y-2)
I say the answer is A, correct me if I'm wrong.
the value of r of the geometric series n=11.3(0.8)n-1

General formula for nth term of any geometric series is 
Here 'r' is the common ratio
a_1 is the first term of the series
Now we compare the given formula with general formula
Compare
with 
The value of r= 0.8