Each X and Y in the equations don't have a number in front of them so they are all considered 1.
D = 1*(-1) - 1*(-1) = -1 -1 = -2
The answer is -2
The range of the answer is [-3,infinity) and {yly>=-3}
Answer:
C(t)=5000 -10t
Step-by-step explanation:
There are many examples in the real world of relationships that are functions.
For example, imagine a tank full of water with a capacity of 5000 liters, this tank has a small hole, by which 10 liters of water are lost every hour.
If we call C the amount of water in the tank as a function of time, then we can write the following equation for C:

Where:
C (t): Amount of water in the tank as a function of time
: Initial amount of water in the tank at time t = 0
a: amount of water lost per hour
t: time in hours
Then the equation is:
The graph of C (t) is a line of negative slope. This relation is a function since for each value of t there is a single value of C.
Its domain is the set of all positive real numbers t between [0,500]
Because the time count starts at t = 0 when the tank is full and ends at t = 500 when empty
Its Range is the set of all positive real numbers C between [0,5000] Because the amount of water in the tank can never be less than zero or greater than 5000Litres
Answer:
Max Value: x = 400
General Formulas and Concepts:
<u>Algebra I</u>
- Domain is the set of x-values that can be inputted into function f(x)
<u>Calculus</u>
- Antiderivatives
- Integral Property:

- Integration Method: U-Substitution
- [Integration] Reverse Power Rule:

Step-by-step explanation:
<u>Step 1: Define</u>

<u>Step 2: Identify Variables</u>
<em>Using U-Substitution, we set variables in order to integrate.</em>

<u>Step 3: Integrate</u>
- Define:

- Substitute:

- [Integral] Int Property:

- [Integral] U-Sub:

- [Integral] Rewrite:

- [Integral - Evaluate] Reverse Power Rule:

- Simplify:

- Back-Substitute:

- Factor:

<u>Step 4: Identify Domain</u>
We know from a real number line that we cannot have imaginary numbers. Therefore, we cannot have any negatives under the square root.
Our domain for our integrated function would then have to be (-∞, 400]. Anything past 400 would give us an imaginary number.