Answer:
First option: The slope is negative for both functions.
Fourth option: The graph and the equation expressed are equivalent functions.
Step-by-step explanation:
<h3>
The missing graph is attached.</h3><h3>
</h3>
The equation of the line in Slope-Intercept form is:

Where "m" is the slope and "b" is the y-intercept.
Given the equation:

We can identify that:

Notice that the slope is negative.
We can observe in the graph that y-intercept of the other linear function is:

Then, we can substitute this y-intercept and the coordinates of a point on that line, into
and solve for "m".
Choosing the point
, we get:

Notice that the slope is negative.
Therefore, since the lines have the same slope and the same y-intercept, we can conclude that they are equivalent.