<h2>25 </h2>
Step-by-step explanation:
<h3><em>=</em><em> </em><em>3</em><em> </em><em>×</em><em> </em><em>(</em><em>5</em><em> </em><em>-</em><em> </em><em>1</em><em>)</em><em> </em><em>+</em><em> </em><em>1</em><em>3</em></h3><h3><em>=</em><em> </em><em>3</em><em> </em><em>×</em><em> </em><em>4</em><em> </em><em>+</em><em> </em><em>1</em><em>3</em></h3><h3><em>=</em><em> </em><em>1</em><em>2</em><em> </em><em>+</em><em> </em><em>1</em><em>3</em></h3><h3><em>=</em><em> </em><em>2</em><em>5</em></h3>
<h2>MARK ME BRAINLIST</h2>
PLZ FOLLOW ME
Answer:
24
Step-by-step explanation:
Divide 288 by 12
= 24
Answer:
k=2
Problem:
if the equation x^2 +(k+2)x+2k=0 has equal roots,then the value of k is ..
Step-by-step explanation:
Since the coefficient of x^2 is 1, we can use this identity to aid us: x^2+bx+(b/2)^2=(x+b/2)^2.
So we want the following:
[(k+2)/2]^2=2k
Apply the power on the left:
(k+2)^2/4=2k
Multiply both sides by 4:
(k+2)^2=8k
Expand left side:
k^2+4k+4=8k *I used identity (x+c)^2=x^2+2xc+c^2
Subtract 8k on both sides:
k^2-4k+4=0
Factor using the identity mentioned a couple lines above:
(k-2)^2=0
Since zero squared is zero, we want k-2=0.
Adding both sides by 2 gives k=2.
Given:
The expression is:

To find:
The resulting polynomial in standard form.
Solution:
We have,

Write subtraction of a polynomial expression as addition of the additive inverse.

Rewrite terms that are subtracted as addition of the opposite.

Group like terms.
![[6m^5+m^5]+[3+(-6)]+[(-m^3)+(-2m^3)]+[(-4m)+4m]](https://tex.z-dn.net/?f=%5B6m%5E5%2Bm%5E5%5D%2B%5B3%2B%28-6%29%5D%2B%5B%28-m%5E3%29%2B%28-2m%5E3%29%5D%2B%5B%28-4m%29%2B4m%5D)
Combine like terms.

On simplification, we get

Write the polynomial in standard form.

Therefore, the required polynomial in standard form is
.