Step-by-step explanation:
n (U)=2000
n (A)=50% of 2000
=(50÷100)×2000
= 1000
n( B) = 40%
= (40÷100)×2000
= 800
n(AuB)(compliment) = 15%
=(15÷100)×2000
=300
Venn diagram ta banauna aauxha holani
I hope you know how to make a Venn diagram.
Mark me as a brainliest
23 x 5% =
23 x 0.05= 1.15 (total sales tax)
23 + 1.15= $24.15 (total price)
Answer:
8 am Monday
Step-by-step explanation:
The difference between the two watches is 2+1= 3 minutes.
It would take 60/3 = 20 hours to have a difference of 60 minutes.
From noon Sunday it would be more 20 hours the earliest time there would be a difference of one hour between the two watches' time.
12 noon + 20 hours= 8 am Monday
To estimate this we can do it like this:-
<span>
Way #1
3.4 = 3
6 = 6
3 </span>÷ 6 = <span>0.5
So, to estimate 3.4 </span>÷ 6 we round 3.4 to the nearest whole number and den divide. Den d answer is our estimated answer!
3.4 ÷ 6 = 0.5
Hope I helped ya!!
Answer:
The answer is below
Step-by-step explanation:
The linear model represents the height, f(x), of a water balloon thrown off the roof of a building over time, x, measured in seconds: A linear model with ordered pairs at 0, 60 and 2, 75 and 4, 75 and 6, 40 and 8, 20 and 10, 0 and 12, 0 and 14, 0. The x axis is labeled Time in seconds, and the y axis is labeled Height in feet. Part A: During what interval(s) of the domain is the water balloon's height increasing? (2 points) Part B: During what interval(s) of the domain is the water balloon's height staying the same? (2 points) Part C: During what interval(s) of the domain is the water balloon's height decreasing the fastest? Use complete sentences to support your answer. (3 points) Part D: Use the constraints of the real-world situation to predict the height of the water balloon at 16 seconds.
Answer:
Part A:
Between 0 and 2 seconds, the height of the balloon increases from 60 feet to 75 feet at a rate of 7.5 ft/s
Part B:
Between 2 and 4 seconds, the height stays constant at 75 feet.
Part C:
Between 4 and 6 seconds, the height of the balloon decreases from 75 feet to 40 feet at a rate of -17.5 ft/s
Between 6 and 8 seconds, the height of the balloon decreases from 40 feet to 20 feet at a rate of -10 ft/s
Between 8 and 10 seconds, the height of the balloon decreases from 20 feet to 0 feet at a rate of -10 ft/s
Hence it fastest decreasing rate is -17.5 ft/s which is between 4 to 6 seconds.
Part D:
From 10 seconds, the balloon is at the ground (0 feet), it continues to remain at 0 feet even at 16 seconds.