None of them match the answer is really (-2,2), (-4,2), and (-2,8).
It’s on open dot because it doesn’t include the 4 and it shades all the numbers greater then 4 (so it goes to the right).
What is the solution set of x2 + y2 = 26 and x − y = 6? A. {(5, -1), (-5, 1)} B. {(1, 5), (5, 1)} C. {(-1, 5), (1, -5)} D. {(5,
Rus_ich [418]
He two equations given are
x^2 + y^2 = 26
And
x - y = 6
x = y +6
Putting the value of x from the second equation to the first equation, we get
x^2 + y^2 = 26
(y + 6) ^2 + y^2 = 26
y^2 + 12y + 36 + y^2 = 26
2y^2 + 12y + 36 - 26 = 0
2y^2 + 12y + 10 = 0
y^2 + 6y + 5 = 0
y^2 + y + 5y + 5 = 0
y(y + 1) + 5 ( y + 1) = 0
(y + 1)(y + 5) = 0
Then
y + 1 = 0
y = -1
so x - y = 6
x + 1 = 6
x = 5
Or
y + 5 = 0
y = - 5
Again x = 1
So the solutions would be (-1, 5), (1 , -5). The correct option is option "C".
Answer:
vertex
Step-by-step explanation:
vertex
If the coefficient a > 0, then the parabola opens upward and the vertex is the lowest point on the parabola. We say that k is the minimum value of the quadratic function. On the other hand, if the coefficient a < 0, then the parabola opens downward and the vertex is the highest point on the parabola.
Step-by-step explanation:
Equation: 
First step:

Second step:

Third step:

Fourth step:
