=−640x10+1280x9+19904x8−40728x7−144488x6+323904x5−162304x4+1024x3+2048x2
step by step
(2x+8x2+3x−4x(x−4)(x−1)(20)x+4)(2)(x+4)(x−4)(2)x(x−1)(2)x(x+4)
=((2x+8x2+3x−4x(x−4)(x−1)(20)x+4)(2)(x+4)(x−4)(2)x(x−1)(2)x)(x+4)
=((2x+8x2+3x−4x(x−4)(x−1)(20)x+4)(2)(x+4)(x−4)(2)x(x−1)(2)x)(x)+((2x+8x2+3x−4x(x−4)(x−1)(20)x+4)(2)(x+4)(x−4)(2)x(x−1)(2)x)(4)
=−640x10+3840x9+4544x8−58904x7+91128x6−40608x5+128x4+512x3−2560x9+15360x8+18176x7−235616x6+364512x5−162432x4+512x3+2048x2
=−640x10+1280x9+19904x8−40728x7−144488x6+323904x5−162304x4+1024x3+2048x2
Answer:
plug in -6
-(-6) - 3
the 6 turns into a positive
subtract 3 from 6
= 3
A benefit is the technology can be more aaurate and you can use a compass and a straightedge wrong and get lost. Also the compass can break
Answer:
R = ![\left[\begin{array}{ccc}-3&-2\\1&-3\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%26-2%5C%5C1%26-3%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
P - Q + R = I ( I is the identity matrix )
-
+ R =
( subtract corresponding elements )
+ R = ![\left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5C%5C%5Cend%7Barray%7D%5Cright%5D)
+ R = ![\left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5C%5C%5Cend%7Barray%7D%5Cright%5D)
R =
-
= ![\left[\begin{array}{ccc}-3&-2\\1&-3\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%26-2%5C%5C1%26-3%5C%5C%5Cend%7Barray%7D%5Cright%5D)