For a standing wave if both ends are fixed, the wavelength must be such that the length of the string be an exact multiple of a half wavelength.
The longest wavelength must be such that the length of the string must be equal to half a wavelength, and therefore the wavelength must be double the length of the string; That is 240× 2 = 480 cm
The second longest wavelength must be such that the length of the string must be equal to a whole wavelength, so the second longest wavelength must be 240 cm.
The third longest wavelength must be such that the length of the string must be equal to 1.5 times the wavelength, so the wavelength must be 240/1.5 = 160 cm.
Answer:
Amplitude.
Explanation:
A wave can be defined as a disturbance in a medium that progressively transports energy from a source location to another location without the transportation of matter.
In Science, there are two (2) types of wave and these include;
I. Electromagnetic waves: it doesn't require a medium for its propagation and as such can travel through an empty space or vacuum. An example of an electromagnetic wave is light.
II. Mechanical waves: it requires a medium for its propagation and as such can't travel through an empty space or vacuum. An example of a mechanical wave is sound.
An amplitude can be defined as a waveform that's measured from the center line (its origin or equilibrium position) to the bottom of a trough or top of a crest.
Hence, an amplitude is a word that describes the maximum displacement a point moves from its rest position when a wave passes.
On a graph, the vertical axis (y-axis) is the amplitude of a waveform and this simply means that, it's measured vertically.
Mathematically, the amplitude of a wave is given by the formula;
x = Asin(ωt + ϕ)
Where;
x is displacement of the wave measured in meters.
A is the amplitude.
ω is the angular frequency measured in rad/s.
t is the time period measured in seconds.
ϕ is the phase angle.
Rmax = 4Hmax, that happen if the elevation of a projectile is 45°