For these two questions, first you need to know that the voltage across each branch of a parallel circuit is the same.
So, for Q5, we can first find out the voltage across R₂ by V=IR.
Voltage across R₂ = 2.5 × 8 = 20V
Since R₂ and R₃ are in parallel circuit, their voltage should be the same. Thus, voltage across R₃ is 20V.
So, by V=IR,
current of R₃ =
= 5A
Q6. voltage across R₁ = 2 × 4 = 8V
∴voltage across R₂ = 8V
current of R₂ =
= 1A
<h3><u>Alternative method</u></h3>
From these two examples, you can find out that the current of each branch of the parallel circuit is inversely proportional to the resistance of the branch.
ie. for Q5,
= 
= 
I₃ = 5A
Q6.
= 
= 
I₂ = 1A
The wind direction changed from morning to night because land and water absorbing solar energy unequally.
<h3>Convection current</h3>
Convection is said to occur when there is heat transfer by an actual movement of participles from place to place. The movement of air mass (wind) is affected by the relative amounts of solar energy absorbed by the land and sea.
Hence, the wind direction changed from morning to night because land and water absorbing solar energy unequally.
Learn more about convection current: brainly.com/question/12841408
We shall consider two properties:
1. Temperature difference
2. Thermal conductivity of the material
Use a cylindrical rod of a given material (say steel) which is insulated around its circumference.
One end of the rod is dipped in a large reservoir of water at 100 deg.C and the other end is dipped in water (with known volume) at 40 deg. C. The cold water if stored in a cylinder which is insulated on all sides. A thermometer reads the temperature of the cold water as a function of time.
This experiment will show that
(a) heat flows from a region of high temperature to a region of lower temperature.
(b) The thermal energy of a body increases when heat is added to it, and its temperature will rise.
(c) The thermal conductivity of water determines how quickly its temperature will rise. If mercury replaces water in the cold cylinder, its temperature will rise at a different rate because its thermal conductivity is different.
The coefficient of friction between the soap and the floor is 0.081
If Juan steps on the soap with a force of 493 N, this is her weight, W. This weight also equals the normal reaction on the floor, N.
We know that frictional force F = μN where μ = coefficient of friction between soap and floor.
So, μ = F/N
Since F = 40 N and N = W = 493 N,
μ = F/N
μ = 40 N/493 N
μ = 0.081
So, the coefficient of friction between the soap and the floor is 0.081
Learn more about coefficient of friction here:
brainly.com/question/13923375
A=f/m
A=900/425
A=2.18
To determine acceleration you divide the force by the mass.