My answer to this question C
Given:
Polynomial is
.
To find:
The sum of given polynomial and the square of the binomial (x-8) as a polynomial in standard form.
Solution:
The sum of given polynomial and the square of the binomial (x-8) is

![[\because (a-b)^2=a^2-2ab+b^2]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%28a-b%29%5E2%3Da%5E2-2ab%2Bb%5E2%5D)

On combining like terms, we get


Therefore, the sum of given polynomial and the square of the binomial (x-8) as a polynomial in standard form is
.
Answer:
Enter the expression you want to factor in the editor. The Factoring Calculator transforms complex expressions into a product of simpler factors. It can factor expressions with polynomials involving any number of vaiables as well as more complex functions.
Step-by-step explanation: