Answer: Angle OZP= 62 Angle PZQ=63
(4r+2)+(5r-12)=125
9r-10=125
9r=135
r=15
Angle OZP Angle PZQ
4(15)+2 5(15)-12
62 63
The paraboloid meets the x-y plane when x²+y²=9. A circle of radius 3, centre origin.
<span>Use cylindrical coordinates (r,θ,z) so paraboloid becomes z = 9−r² and f = 5r²z. </span>
<span>If F is the mean of f over the region R then F ∫ (R)dV = ∫ (R)fdV </span>
<span>∫ (R)dV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] rdrdθdz </span>
<span>= ∫∫ [θ=0,2π, r=0,3] r(9−r²)drdθ = ∫ [θ=0,2π] { (9/2)3² − (1/4)3⁴} dθ = 81π/2 </span>
<span>∫ (R)fdV = ∫∫∫ [θ=0,2π, r=0,3, z=0,9−r²] 5r²z.rdrdθdz </span>
<span>= 5∫∫ [θ=0,2π, r=0,3] ½r³{ (9−r²)² − 0 } drdθ </span>
<span>= (5/2)∫∫ [θ=0,2π, r=0,3] { 81r³ − 18r⁵ + r⁷} drdθ </span>
<span>= (5/2)∫ [θ=0,2π] { (81/4)3⁴− (3)3⁶+ (1/8)3⁸} dθ = 10935π/8 </span>
<span>∴ F = 10935π/8 ÷ 81π/2 = 135/4</span>
Answer:
Step-by-step explanation:
<u>The equation to reflect the monthly plans:</u>
- Plan A f(x) = 0.16x + 12
- Plan B g(x) = 0.12x + 29
<u>We need to find the value of x when f(x) = g(x):</u>
- 0.16x + 12 = 0.12x + 29
- 0.16x - 0.12x = 29 - 12
- 0.04x = 17
- x = 17/0.04
- x = 425 minutes
<u>The cost is:</u>
y = mx + c
7 = 4(-8) + c
c = 39
The equation is y = 4x + 39
y - 7 = 4 ( x - (-8))
y -7 = 4 (x +8)