Answer:
± 27.33 ft
Step-by-step explanation:
For the given problem, we can estimate the initial and final coordinates of the line of the ball path as (-40,-50) and (0,0). Therefore, the slope is:
(-50-0)/(-40-0) = 50/40 = 1.25
Similarly, we can estimate the slope of a perpendicular line to the line of the ball path as: -1*(1/1.25) = -0.8.
Therefore, using (0,0) and the slope -0.8, the equation of the perpendicular line is: -0.8 = (y-0)/(x-0);
-0.8 = y/x
y = -0.8x
Furthermore, we are given the circle radius as 35 ft and we can use the distance formula to find the two points 35 ft far from the origin:
35^2 = x^2 + y^2
y = -0.8x
35^2 = x^2 + (-0.8x)^2
1225 = (x^2 + 0.64x^2)
1225 = 1.64x^2
x^2 = 1225/1.64 = 746.95
x = sqrt(746.95) = ± 27.33 ft
Answer:
1. x² + 3x - 5 = 0
2. x² - x = 3 x + 7
4. 7x² + 14x = 0
Step-by-step explanation:
A Quadratic equation takes the form;
ax² + bx + c = 0
a, b, c are constants and a cannot be 0.
Options 1 fits this;
x² + 3x - 5 = 0
Option 2 fits this as well;
x² - x = 3 x + 7
x² -x - 3x - 7 = 0
x² - 4x - 7 = 0
Option 4 fits this as well if c = 0.
7x² + 14x + 0 = 0
Well pick an answer and press submit
<span>Sphere: (x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
Intersection in xy-plane: (x - 4)^2 + (y + 12)^2 = 36
Intersection in xz-plane: DNE
Intersection in yz-plane: (y + 12)^2 + (z - 8)^2 = 84
The desired equation is quite simple. Let's first create an equation for the sphere centered at the origin:
x^2 + y^2 + z^2 = 10^2
Now let's translate that sphere to the desired center (4, -12, 8). To do that, just subtract the center coordinate from the x, y, and z variables. So
(x - 4)^2 + (y - -12)^2 + (z - 8)^2 = 10^2
(x - 4)^2 + (y - -12)^2 + (z - 8)^2 = 100
Might as well deal with that double negative for y, so
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
And we have the desired equation.
Now for dealing with the coordinate planes. Basically, for each coordinate plane, simply set the coordinate value to 0 for the axis that's not in the desired plane. So for the xy-plane, set the z value to 0 and simplify. So let's do that for each plane:
xy-plane:
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(x - 4)^2 + (y + 12)^2 + (0 - 8)^2 = 100
(x - 4)^2 + (y + 12)^2 + (-8)^2 = 100
(x - 4)^2 + (y + 12)^2 + 64 = 100
(x - 4)^2 + (y + 12)^2 = 36
xz-plane:
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(x - 4)^2 + (0 + 12)^2 + (z - 8)^2 = 100
(x - 4)^2 + 12^2 + (z - 8)^2 = 100
(x - 4)^2 + 144 + (z - 8)^2 = 100
(x - 4)^2 + (z - 8)^2 = -44
And since there's no possible way to ever get a sum of 2 squares to be equal to a negative number, the answer to this intersection is DNE. This shouldn't be a surprise since the center point is 12 units from this plane and the sphere has a radius of only 10 units.
yz-plane:
(x - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(0 - 4)^2 + (y + 12)^2 + (z - 8)^2 = 100
(-4)^2 + (y + 12)^2 + (z - 8)^2 = 100
16 + (y + 12)^2 + (z - 8)^2 = 100
(y + 12)^2 + (z - 8)^2 = 84</span>
Answer:
$12
Step-by-step explanation:
when d = 0, F = 110
when d = 100, F = 110 + (0.12 x 100) = 122
when d = 200, F = 110 + (0.12 x 200) = 134
etc.
Therefore, increase in price for every 100 meters climbed = 134 - 122 = 122 - 110 = 12