Here’s a good photo to reference when converting in the metric system.
Each time you move down a step you move the decimal to the right, each time you move up a step you move the decimal to the left.
We are going from 1.2 kg or kilograms, which is at the very top left of the ladder. To get to mg or milligrams, we would have to make six jumps, so we’d move the decimal over six times.
1.2 > 12. > 120. > 1200. > 12000. > 120000. > 1200000.
So our final answer would be 1,200,000mg.
Explanation:
well there is nothing there and it could be different by diffrent objects, idk
Answer:
3.70242 nm
Explanation:
Using Compton effect formula
Δλ = ( h / mec) ( 1 - cosθ)
where h is planck constant = 6.62607 × 10 ⁻³⁴ m²kg/s
me, mass of an electron = 9.11 × 10⁻³¹ kg
c is the speed of light = 3 × 10⁸ m/s
Δλ = 6.62607 × 10 ⁻³⁴ m²kg/s / (9.11 × 10⁻³¹ kg × 3 × 10⁸ m/s ) ( 1 - cos 90°) = 0.242 × 10 ⁻¹¹ m = 2.42 × 10⁻¹² m = 0.00242 nm
modified wavelength = 3.7 nm + 0.00242 nm = 3.70242 nm
Explanation:
Below is an attachment containing the solution.
Nothing works if Switch-3 is open.
-- None
-- A, E, F, G
-- None
-- A, B, E, F, G
-- A, C, D, E, F, G (everything except B)