To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as

where
I = Moment of inertia
For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as






Using the expression of angular acceleration we can find the to then find the torque, that is,




With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so




Therefore the torque exerted on it is 
Answer:
7.93 lbs is equal to 3596.987 grams.
Explanation:
The weight in grams is equal to the pounds multiplied by 453.59237.
So... you would multiply 7.93 by 453.59237.
7.93 x 453.59237 = 3596.987
Hope that helped!
Answer:
<em>W=700 Joule</em>
Explanation:
<u>Physics Work
</u>
Is the dot product of the force vector by the displacement vector

When both the force and the displacements are pointed in the same direction, the formula reduces to its scalar version

The weightlifter is applying a net force of 350 N to lift the weights a distance of 2 m, thus the net work done is

<u>Answer</u>
48 Volts
<u>Explanation</u>
The question can be solve using the turn rule of a transformer that states;
Np/Ns = Vp/Vs
Where Np ⇒ number of turns in the primary coil.
Ns ⇒number of turns in the seconndary coil
Vp ⇒ primary voltage
Vs ⇒secondary voltage
Np/Ns = Vp/Vs
10/4 = 120/Vp
Vp = (120 × 4)/10
= 480/10
= 48 Volts
Help!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!